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A Survey of the Core-Congruential Formulation for

Geometrically Nonlinear TL Finite Elements

C. A. FELIPPA*, L. A. CRIVELLI ** and B. HAUGEN ***

J.

SUMMARY

This article presents a survey of the Core-Congruential Formulation (CCF) for geometrically

nonlinear mechanical finite elements based on the Total Lagrangian (TL) kinematic description.

Although the key ideas behind the CCF can be traced back to Rajasek_aran and Murray in 1973, it

has not subsequently received serious attention. The CCF is distinguished by a two-phase devel-

opment of the finite element stiffness equations. The initial phase develop equations for individual

particles. These equations are expressed in terms of displacement gradients as degrees of freedom.

The second phase involves congruential-type transformations that eventually binds the element

particles of an individual element in terms of its node-displacement degrees of freedom. Two ver-

sions of the CCF, labeled Direct and Generalized, are distinguished. The Direct CCF (DCCF) is

first described in general form and then applied to the derivation of geometrically nonlinear bar,

and plane stress elements using the Green-Lagrange strain measure. The more complex Gener-

alized CCF (GCCF) is described and applied to the derivation of 2D and 3D Timoshenko beam
elements. Several advantages of the CCF, notably the physically clean separation of material and

geometric stiffnesses, and its independence with respect to the ultimate choice of shape functions

and element degrees of freedom, are noted. Application examples involving very large motions

solved with the 3D beam element display the range of applicability of this formulation, which

transcends the kinematic limitations commonly attributed to the TL description.

1. INTRODUCTION

There is an elegant Total Lagrangian (TL) formulation of geometrically nonlinear mechani-

cal finite elements that has received little attention in the literature. This will be referred to

as the Core-Congruential Formulation, or CCF, in the sequel. The key concepts, presented

by Rajasekaran and Murray 1 in 1973, evolved from the analysis and reinterpretation of the

pioneer work of Mallet and Marcal, 2 as well as Murray's previous work in geometrically

nonlinear finite element analysis. 3 The discussion of Reference 1 by Felippa 4 provided para-

metric expressions for the stiffness matrices that appear at various levels of the discrete

governing equations. This work originated what is called here the Direct Core Congruential

Formulation, or DCCF.

In 1987 a course in nonlinear finite elements offered by the first author presented the

derivation of several elements using the DCCF. Preparation of homework assignments and
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feedback from students in this and follow-up offerings helped to streamline the material.

Subsequently Crivelli's doctoral thesis 5 used the CCF in the systematic development of a

three-dimensional nonlinear Timoshenko beam element capable of undergoing arbitrarily

large rotations. Challenges posed by this application pushed this formulation beyond

frontiers hitherto deemed impassable by a TL element with rotational degrees of freedom.

This development was summarily reported in a survey article by Felippa and Crivelli 6 and

explained in more detail in a subsequent paper by Crivelli and Felippa/

A lesson gained from this research is that, when dealing with 3D finite rotations, the CCF

should be applied in a staged fashion that allows the systematic examination of additional

terms arising in the transformations to physical degrees of freedom. That transformation

methodology gave rise to what is here called the Generalized CCF, or GCCF.

Both DCCF and GCCF share the same "divide and conquer" philosophy. However, the

core equations as well as subsequent steps that transform those equations to physical

freedoms vary in complexity. To simplify the exposition while focusing on the essential

aspects, Sections 3 through 7 focus on the DCCF. Examples of application to elements

amenable to the direct treatment are presented. The GCCF is discussed in Sections 8

through 10, and illustrated with applications to 2D and 3D beam elements.

REMARK 1.1. Several authors have expressed the belief that the approximation performance of

TL-based elements degrades beyond moderate rotations, and an updated Lagrangian or corota-

tional description is necessary for handling truly large motions. For example, in 1986 Mathiasson,

Bengtsson and Samuelsson s concluded that "The TL formulation can only be used in problems

with small or moderate displacements." More recently Bergan and Mathisen 9 voice a similar

opinion: "it is commonly known that in a step by step TL formulation artificial strains easily

arise in beam elements due to nonhomogeneities in the displacement expansions in transverse

and longitudinal directions." Our experience shows that such limitations are not inherent in the

TL description but instead emerge when a priori kinematic approximations are made to simplify

element derivations. The 3D beam element just cited exhibits computational and approximation

performance for very large rotations comparable to those based on the co-rotational and Updated

Lagrangian descriptions while retaining certain advantages listed in the Conclusions.

2. OVERVIEW

2.1 Basic Concepts

The original development of the CCF was concerned with the construction of TL stiffness

matrices for geometrically nonlinear analysis through the congruential-transformation pat-

tern

Klevel = Iv, GTslevetG dV, (2.1)

$*

where S is the core stiffness matrix, K the physical stiffness in terms of the nodal degrees of

freedom v, G a core-to-physical-freedom transformation matrix assumed to be independent

of v, V0 the appropriate reference integration volume, and in which "level" identifies the

governing equation level at which the stiffness matrix is used.



The three variational levels of interest in practice are: energy (level 0), force equilibrium

(level 1), and first-order incremental equilibrium (level 2). Qualifiers "residual-force" and

"secant-stiffness" are also used for level 1, and "tangent-stiffness" used for level 2.

The core stiffness matrix is expressed in terms of the displacement gradients at each ma-

terial point. Displacement gradients g make a better choice of core variables than finite

strains because for elements with translational degrees of freedom (DOFs) they can be

expressed linearly in terms of node displacements v as g = Gv, a property that validates

(2.1) for all levels. As discussed below, such elements fall under the purview of the Direct

CCF.

The qualifier "core" emphasizes the goal of independence of S lewi with respect to dis-

cretization decisions such as element geometry, shape functions, and choice of nodal de-

grees of freedom. Such a dependence is introduced by the congruential transformation

indicated in (2.1) and the integration over the element volume.

2.2 Direct and Generalized CCF

The basic schematics of the CCF, mathematically expressed through (2.1), may be dia-

grammed as

Core

Stiffness

Equations

Congruential
Transformation

Equations

==_

Physical-DOF
Stiffness

Equations

But this panoramic view needs to be rendered more precise. If the relation between core

DOFs (the displacement gradients g) and the physical DOFs (the node displacements v

of a finite element model) is linear, these transformations do not depend on level:

(0) Core Energy Stiffness

(1) Core Secant Stiffness

(1) Core Internal Force

(2) Core Tangent Stiffness

==_

I Congruential

Transformation

Equations

==_

Physical Energy Stiffness

Physical Secant Stiffness

Physical Internal Force

Physical Tangent Stiffness

In this diagram, numbers annotated within the "core box" denote the variational level

of the governing equation in use. Internal force and secant stiffness are two alternative

governing-equation expressions at level 1. The energy level (level 0) may also be expressed

in several ways, but this is not shown in the diagrams to reduce clutter. Under the afore-

mentioned assumption we obtain the Direct Core Congruential Formulation, or DCCF.

If the relation between displacement gradients g and node displacements v is nonlinear,

the transformations sketched above are not only more complex but depend on variational
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level and possibly the expressionform used within a level. This complication arises when

elements with rotational degrees of freedom such as beams, plates and shells are considered.

It gives rise to the Generalized Core Congruential Formulation, or GCCF.

Two variants of the GCCF may be distinguished. If the relation between g and v is

nonlinear but algebraic, the transformation equations do vary with level but in principle

are still possible as illustrated in the following diagram.

(0) Core Energy Stiffness

(1) Core Secant Stiffness

(1) Core Internal Force

(2) Core Tangent Stiffness

S-Congruential
Transformation

Equations

T-Congruential
Transformation

Equations

=:_

i

Physical Energy Stiffness

Physical Secant Stiffness

Physical Internal Force

Physical Tangent Stiffness

Here "T-Congruential" and "S-Congruential" are abbreviations for "Tangent Congruen-

tial" and "Secant-Congruential," respectively. Such a distinction is elaborated upon in
Section 8.

If the relation between g and v is nonlinear and can be expressed only in non-integrable

differential form, the "Secant Transformation Equations" of the preceding diagram do not

generally exist, and the diagram must be truncated:

(0) Core Energy Stiffness

(1) Core Secant Stiffness

(1) Core Internal Force

(2) Core Tangent Stiffness

T-Congruential
Transformation

Equations

Physical Internal Force

Physical Tangent Stiffness

These two variants of the GCCF are called Algebraic GCCF and Differential GCCF and

denoted by acronyms AGCCF and DGCCF, respectively, in the sequel. The main dis-

tinction between AGCCF and DGCCF is that it makes no sense to talk about missing

quantities, such as the physical secant stiffness, with the latter.

The original development of the CCF outlined in the Introduction focused on elements

with translational-degree-of-freedom configurations. For such elements the Direct form

of the CCF, or DCCF, is sufficient. Sections 3 through focus on that form, leaving the

development and application of the GCCF to Section 8 and following ones.



2.3 The CCF Philosophy: Divide and Conquer

The CCF derivation of the finite element equations naturally reflects the outlined frame-

work. It proceeds through two phases: a core phase followed by a transformation phase.

In the initial phase core energy, secant and tangent stiffness matrices as well as internal

force vectors are obtained. These matrices and vectors pertain to individual particles. For

the stiffness matrices they are collectively represented by the term S t''_t in (2.1).

The key goal is to try to make such core equations as independent as possible with re-

spect to finite-element discretization decisions such as element geometry, shape functions,

selection of nodal degrees of freedom and (in the case of rotational DOFs) rotational

parametrizations. To emphasize this independence, the term core was coined. Complete

independence is in fact achievable if the relation between displacement gradients g and v

is linear, which characterizes the DCCF. The goal has to be tempered if the relation is

nonlinear because dependencies may arise at the tangent stiffness level. Such dependencies

create the so-called complementary geometric s_iffness terms, which are characteristic of

elements that fall under purview of the GCCF.

In the transformation phase, these core forms are transformed to physical DOFs, i.e.

element node displacements. The transformation may be done directly for simple elements

and in multistage fashion for complex ones. In particular, multistage transformations

are recommended for elements that require the Differential GCCF such as 3D beam and

shell elements. In this case the transformation phase is decomposed into transformation

stages that progressively "bind" particles into lines, areas or volumes through kinematic

constraints, and eventually link the element domain to the nodal degrees of freedom.

Decisions such as the choice of specific parametrizations for finite rotations may be deferred

to final stages.

What are the differences between the CCF and the more conventional Total Lagrangian

formulation of nonlinear finite elements? If kinematic exactness is maintained throughout,

the final discrete equations are identical. This is shown in Appendix 1 for the DCCF applied

to continuum elements. But in geometrically nonlinear analysis approximations of various

kinds are common, especially in structural elements with rotational degrees of freedom

such as beams, plates and shells. In the conventional formulation it is quite difficult to

assess a priori the effect of seemingly innocuous approximations "thrown into the pot,"

and a posteriori exhaustive testing of complex situations becomes virtually impossible.

Sample: how does the neglect of higher order terms in the axial deformation of a spinning

3D beam affects torsional buckling?

The staged approach recommended for the GCCF permits a better control over such

assumptions. The core equations are physically transparent, clearly displaying the effect of

material behavior, displacement gradients and prestresses. In the ensuing transformation

sequence the origin of each term can be accurately traced, and on that basis informed

decisions on retention or dropping made. This process can be aided by computer by

testing subproblems that isolate the physics modeled by specific terms.
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From this discussion it follows that, from the standpoint of element development, evalu-

ation and testing, the most significant advantage that can be claimed for the CCF is the

clean separation of physical effects. The importance of this factor should not be underes-

timated, because physical transparency is the key to success in nonlinear analysis.

3. HISTORICAL BACKGROUND

In 1968 Mallet and Marcal 2 attempted to establish a standard nomenclature for geomet-

rically nonlinear finite element structural analysis based on the Total Lagrangian (TL)

kinematic description. Consider a discrete, finite element model of a static structural sys-

tem under dead loading with nodal displacement degrees of freedom collected in array

v. Displacements are measured from a fixed reference configuration Co to a current con-

figuration C. The virtual-work conjugate forces, independent of v, are collected in array

p. The system has a total potential energy function J -- U - W that is the difference

between the strain energy U and the loads potential W = pTv. The residual node forces

are r = OJ/Ov, and the symbol A denotes increment associated with the variation of the

current configuration. (In keeping up with the spirit of Reference 2 actual variations are

used in this Section rather than virtual ones; the latter are identified by the usual (5 prefix.)

Mallet and Marcal expressed the total potential energy, the residual (force-balance) equi-

librium equations, and the incremental equilibrium equations as follows:

J=U-W = _vl T [Ko + _N1 + _N2] v - pTv,1 1 (3.1)

OJ
__ 1 1

r - 0v [K0 + _N, + _N_] v- p = 0, (3.2)

Ar = [Ko + N1 -}- N2] Av - Ap = 0. (3.3)

Here K0 is the linear stiffness matrix evaluated at the reference configuration, whereas

N1 and N2 are nonlinear stiffness matrices, also evaluated at the reference configuration,

that depend linearly and quadratically, respectively, on the node displacements v. The N

matrices were said "to repeat" in the foregoing expressions. (This old notation has not

survived; presently symbol N is most commonly used to identify matrices of element shape

functions.)

Five years later Rajasekaran and Murray 1 examined more critically the structure of the

matrices that appear in the above equations. In that investigation they chose to start

from the "core" stiffness matrices corresponding to K, N1 and N2 expressed in terms

of displacement gradients, and in doing so laid down the main idea of the CCF. Working

with specific elements they showed that the nonlinear stiffness matrices N1 and N2 are not

uniquely determined. Indeed (3.1)-(3.3) as written are unique only for a single degree of

freedom. They did not present, however, a general expression valid for arbitrary elements.

This was partly done by Felippa, 4 who in the discussion of Reference 1 considered again

those equations, rewritten here in a more general and compact form:

j= 1 T-_U T_v _ v+(p°-p) v, (3.4)
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r = K_v+ pO _ p = f_ p = 0,

Ar = KAv-- Ap =0,

in which the notation of this paper -- rather than that of Reference 4 -- is used. Here K U,

K" and K denote the energy, secant and tangent stiffness matrices, respectively. (Energy

and secant stiffnesses are not denoted by K e and K s because such symbols are used for

other purposes in the finite element course noted in the Introduction.) In addition, p0 is

the prestress force vector, which vanishes if the reference configuration is stress free and

was omitted in that discussion, 4 and f = K"v+p ° is the internal force vector. The tangent

stiffness is of course fundamental in incremental-iterative solution methods and stability

analysis, while the secant stiffness (by itself or in the internal-force form Krv + p0 ) is

important in pseudo-force methods. The energy stiffness enjoys limited application per se

but has theoretical importance as source for the other two.

In linear problems K v = K r = K = K0 and the three stiffness matrices coalesce. But

in nonlinear problems not only do the matrices differ but, as shown in the next section,

K v and K" may involve arbitrary scalar coefficients. Such parametrized expressions were

given by Felippa 4 under the following restrictions:

(R1)

(a2)

(R3)

(a4)

K _ is symmetric.

The reference configuration is stress free.

The finite strain measure is quadratic in the displacement gradients.

The transformation between core and physical freedoms is linear.

The following treatment eliminates restrictions (R1) and (R2) altogether, and the other

two selectively. It should be noted that restriction (R4) is the condition that, with present

terminology, characterizes the DCCF.

4. CORE STIFFNESS EQUATIONS

4.1 TL Description of Particle Motion

A conservative, geometrically nonlinear structure under dead loading is viewed as a con-

tinuum undergoing finite displacements u. These displacements are measured from a fixed

reference configuration Co to a variable current configuration C. No discretization into

finite elements is implied at this stage. We confine our attention to the case in which the

material behavior stays within the linear elastic range, thus implying small deformational

strains but arbitrarily large rotations. Corresponding points or particles in the reference

and current configuration are referred to a fixed Cartesian coordinate system and have

the coordinates Xi and xi (i = 1,... rid), respectively, where nd is the number of space

dimensions. The displacement field components are ui = xi - Xi.

Let the state of strain at a particle in the current configuration be characterized by ns

strains ei (i = 1, 2,... ns) collected in an array e, and let the corresponding conjugate

7



stressesbe si (i = 1, 2,... us), collected in an array s. Using the summation convention
the elastic stress-strain relations are written

0 , S 0si = s i + Eijej, with Eij = Eji or s= +Ee, (4.1)

0
where s i are stresses in the reference configuration (stresses that remain if ei = 0, also

called prestresses) and Eij are elastic moduli arranged as a ns x ns square array in the

usual manner.

Let if,///, W, fit, _ and T denote the analogues of J, U, W, p, f and r, respectively, at

the particle level. (The first three acquire the meaning of energy densities, whereas fit is

a dead-loading body force density independent of u.) The strain energy density can be

expressed as

o ½eiEijej eTs0 + leTEe. (4.2)l.t = eis i + =

The total strain energy U is obtained by integrating (4.2) over the structure volume:

U = fv0 U dV; the integration taking place -- as can be expected in a TL description --

over the reference configuration geometry.

Next, introduce the ng displacement gradients gmn = Oum/OX_,. These are subsequently

identified as gi (i = 1, 2,... ng) so they can be conveniently arranged in a one-dimensional

array g. Following Rajasekaran and Murray 1 and Felippa 4 assume that the strains ei are

linked to the displacement gradients through matrix relations of the form

1 T
ei = hTg + _g Hi g, i = 1, 2,... n, (4.3)

where hi and Hi are arrays of dimension ng x 1 and ng x ng, respectively, with Hi sym-

metric. In the original References 1'4 it was assumed that Hi is independent of g, which is

the case for the Green-Lagrange strain measure. This restriction, labeled (R3) in Section

3, will be enforced below except in Section 4.5.

4.2 Energy Variations

As noted previously, for deriving core equations we regard the displacement gradients g

as degrees of freedom. On substituting (4.1) and (4.3) into (4.2) we obtain the "core

counterparts" of (3.4)-(3.6), in which v has become g:

1 gT,-,Ufl=LI_W=7 _ g + (_0 _ fit)Tg,

T __

0K

0g
_Srg+fit°-_=_-fit =0,

_T=S_g-Afit=0.

(4.4)

(4.5)

(4.6)

Here S U, S r and S denote the energy, secant and tangent core stiffness matrices, and fit0

which is independent of g, is the core counterpart of p0.
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With this notation the first and secondvariations of the strain energy density can be
expressedas

1gT_sU_U = _gT(SUg + _0) + : g = 6gT (Srg + _0) _. _gT_,

t?H = 6gWSr 6g + 6gT_Srg + (_2g)T@ = _gT S 6g + (_2g)W_.

These variational equations implicitly determine S r, • and S from S U and @0.

(4.7)

(4.8)

If the

linearity restriction (R4) holds, the term in _2g drops out as explMned in the Remark

below, and

62_ ---6gTS 5g. (4.9)

REMARK 4.1. If g = Gv with G independent of v, 8Zg = G62v = 0 because v are inde-

pendent variables. On the other hand, if displacement gradients are nonlinear functions of node

displacements expressable as gi = gi(vi), then

_gi c

(_gi = _vjOVj = G 0 8vi,
_2gi = °q2gi _fvjSv_ + ¢3gi _22_0

Ovj,gv-'-"_ -_v o/'vj = F_jk,_v_,%k. (4.10)

Thus _g is still (_ _v but/52g = (F _v)/_v, where F is a cubic array. The presence of the term /_2g
is taken into account in the GCCF discussed in Sections 8-10.

4.3 Parametrized Forms

For convenience introduce the following ng x n a matrices (with summation convention on

i,j = 1,...ng implied):

S0 =Eij hihj, Sx = E 0 higTHj, S_ =Eij (hTg) H i,

S2 = E 0 Hi ggTHj, S_ = Eij (gTHig) H j,
(4.11)

in which parentheses are used to emphasize the grouping of scalar quantities such as

gTHig. It may be then verified that, if assumptions (R3)-(R4) of Section 3 hold, the core

stiffnesses and prestress vector in (4.6)-(4.8) possess the general form:

1oz(Sl

_(s,
½_(s,

½Sx +

½S1 +

1 1 0+ sT) + (1 -_)s_ + i_s_ + i(1 - _)s_ + _,H_
1 0+ s_) + (-_- _)s_ + ¼_(s_- s_) + :(_, + _,)H,,

1+ s_r) - _s; + i_s_ - ¼(1+ _)s_ + _,H,,
1 * 0CS_r + (1 - ¢)s_ + ¼(2- ¢)s_ + _¢s_ + _H,

1 0Cs_r +(½ -¢)s; + ¼(_- ¢)s_ + ¼(¢- 1)s_ + _(_, + _,)H,,
'(2 $)(S2 S*) +siHi,s, + ,s, _- CS; + : - -

* 1 * 0
S1 +S T+S1 +S2+_S2+siHi=S0+S_ +S T+S2+s_H_,

(4.12)

sU(a, 3) = So +

=S0+

=So+

s_(¢,_) = So+
=So+

=So+

S=So+

o = sOhi.
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Here a, /3, ¢ and ¢ are arbitrary scalar coefficients in the sense that gTSUg and Srg are

independent of them. In fact,

= S_g + _o = sibi, (4.13)

where bi is defined in (4.18) below. The expressions (4.12) are more general than those

originally given by Felippa 4 because restrictions (R1)-(R2) noted in Section 3 are no longer

enforced. Note that the secant core stiffness S r becomes symmetric if ¢ = 1/2.

The "repeatable forms" (3.1)-(3.3) of Mallet and Marcal are obtained if c_ =/3 = ¢ = 2/3
1 *

and ¢ = 1/2, in which case the combinations Sl + S T + S_ and $2 + _S 2 become the

core counterparts of N1 and N2, respectively. But this observation has largely historical

interest. More physically relevant are the following combinations:

SD = Sl +S T+ S2, SM = S0 + SD,

* s°Hi siHi.Sc = S_ + _S 2 + =
(4.14)

These are the core versions of the initial-displacement, material and geometric stiffness,

respectively. The core tangent stiffness is S = So + So + Sc = SM + So.

If the Generalized CCF is required for downstream element development as explained in

Section 8, Sc = sini is called the principal core geometric stiffness and is denoted by

SGp. In this case the combination

S = SM + SGp, (4.15)

receives the name principal core tangent stiffness.

REMARK 4.2. Finite element practicioners may be surprised at the nonuniqueness of S v and

S r. It appears to contradict the fact that, given two square matrices Aa and As and an arbitrary

nonzero test vector x, Alx = A2x for all x implies A1 = As. But this is not necessarily true if

Aa and As are functions of x. More precisely, the energy core stiffness is not unique because

T S _gT(s,--Sl)g=0, gT(sT--S;)g=0, g ( _ S;)g=0, (4.16)

and the secant core stiffness is not unique because

(sT - S;)g = o, - S;)g = o. (4.17)

Adding "gage terms" such as those of (4.17) multiplied by arbitrary coefficients does not change

6/4 and consequently the secant stiffness acquires two free parameters. Uniqueness holds for the

tangent stiffness because the test vectors are the virtual displacement gradient variations, and S
is not a function of 6g.

REMARK 4.3. Because of (4.16), an additional free parameter appears in S U if unsymmetry

is allowed. If symmetry is enforced the first two gage expressions must be combined to read
gT(s, + ST -- 2Sr)g = 0.
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4.4 Spectral Forms

There is a more compact alternative expression of the core stiffnesses that offers theoretical

as well as implementational advantages at the cost of some generality. Define vectors bi

and ci as

1 Oei = hi + Hig. (4.18)
ei=cTg, ci=hi+_Hig, bi= 0--g

Then the spectral forms (so called because of the formal similarity of equations (4.19)-

(4.21) with the spectral decomposition of a matrix as the sum of rank-one matrices) are

0su(1, 1) = S U = Ei.i cic T + si Hi,
a=13=l

(4.19)

r 0
St(0, 0) = S I_,=,_=o = EO bi cT + si Hi,

r 1 : I¢=1,_b= 1 = Eij + :(si + s iS (_,1) S r CiC T 1 0)Hi,

S = Eij bib T + siHi = SM + SG.

(4.20)

(4.21)

(4.22)

Note that r 1S (_', 1) is symmetric but S"(0, 0) is not. It is seen that for energy and secant

stiffnesses, compactness is paid in terms of settling for specific coefficients.

REMARK 4.4. The foregoing relations may be easily verified by noting that

1 1E,_c,cT= So+ _(sl + sT) + _S_,
1 1

Eij blc T = So + _S1 + S T + _S2,

Eij bib T = So + $1 + S T + $2,

E,, 0g c, \ 0g / + \ 0g/
* 1 *

: si )Hi,= S 1 -]- 782 : EijejHi (si - o

(4.z3)

and seeking these patterns in the general parametrized expressions (4.13).

4.5 Generalization to H(g)

If the Hi depend on g, as it generally happens if strain measures other than Green-

Lagrange's are used, the secant and tangent stiffness core equations become more complex

because of the presence of first and second g-derivatives of Hi. The changes in the core

variational equations (4.7)-(4.8) can be succintly expressed as

((s"+gr)g+ .0 + S0) = + (4.24)

6_u = _gr(S + g)_g + (6_g)r(v + _). (4.25)
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where _r, _ and _ are additional core terms that arise on account of the dependenceof

the Hi on g.

The parametrization and efficient characterization of such terms for several strain mea-

sures of interest in practice, notably logarithmic and midpoint strains, are presently open

problems. Such topics would in fact be good candidates for term projects in advanced
nonlinear finite element courses.

5. CORE STIFFNESS EXAMPLES

Because the core equations reflect the motion of an individual particle, their form is pri-

marily determined by the choice of components of s, e and g that are retained in the strain

energy density. This choice is in turn a byproduct of the mathematical idealization of the

actual structure or structural component.

Several cases are worked out below to illustrate the basic steps. The core expressions

developed in these examples do not force commitment to specific elements, only to a

mathematical model. For example the bar core equations may be subsequently used to

develop 2-node straight elements or 3-node curved ones. Some specific elements based on

these equations are derived in Sections 7, 9 and 10.

5.1 Bar in 3D Space

The particle belongs to a bar moving in 3D space. The only energy contribution is due to

the longitudinal stress. We have nd = 3, ns = 1 and ng - 3. To simplify node subscripting,

Cartesian systems and displacement components will be denoted by {X, Y, Z}, {x, y, z}

and {ux,uy,uz} rather than {Xl,X2,X3} ,{Xl,X2,Z3} and {ul,u2,u3}, respectively.In

the reference configuration Co the bar is referred to a local Cartesian system {X, Y, Z},
with ._ located along the bar axis.

With reference to this local system, the motion of a particle initially at X is defined by

the displacement components _x = fix(-_), uY = uy(X) and uz - fiz(-_'). The three

displacement gradients that intervene in the definition of nonlinear strains are

g = g2 = 0fiy/0X .

g3 z l Ok
(5.1)

As uniaxial strain measure we adopt the Green-Lagrange (GL) axial strain, defined as

e=el= 0,{..+7 \0X] +k, OX] +\OX] j=g,+5 l+g_+g_)

[il { {gl} [1°i1{ 1}= g2 + ½ 92 0 1 92 = hTg + _ g.

g3 ga 0 0 ga

(5.2)

12



Thus for this choiceof strain, hT- h T = [1 0 0] andH1 - Histhe 3×3identity

matrix. The conjugate stress measure sl - s is the second Piola-Kirchhoff (PK2) axial

stress. The stress-strain relation is s = s o + Ee, where s o and s are PK2 axial stresses in

the reference and current configurations, respectively, and E is Young's modulus.

Because H is independent of g, to form the core stiffnesses in local coordinates we can

directly use the spectral expressions (4.19)-(4.22). First construct the vectors

{ 1 "_- } gl }

1
C _-_ C I = _g2 ,

½ga
l+gl}

b - bl = g2 ,

ga

(5.3)

which inserted into the spectral forms yield

sU(1, 1) = Ecc T + s°H = E

St(½, 1) = Ecc r + s'_H = E

1 2 1 1
792(1 791)(1 + ggl) +

1 2
7ga

symm

1 2 1
(1 + gg_) gg=(1 +

1 2

symrn

1½g3(1+
1
yg2g3

1 2
7ga

1
½ga(1 + _gl )

1
¥g2g3

1 2
7ga

.._ $o

_ s rn

1 ,
0

(5.4)

1
0

(5.5)

S = Ebb T + sH = E

(1 + gl) 2 g2(1 + gl) ga(1 +gl)

g_ g_g3

symm g_
1 0 0]

+s 0 1 0 .
0 0 1

(5.6)

In equation (5.5), s m -_- _(sl o + s) = s o + ½Ee is the average or "half-way" stress. The

clean separation into material and geometric (initial-stress) stiffnesses should be noted.

5.2 Plate in Plane Stress

As second example we consider a particle that pertains to a plate in plane stress (mem-

brane), constrained to move in its plane. As usual we consider only the motion of the

midplane. The Cartesian reference system and displacement components will be denoted

by {X,Y}, {x,y} and {ux,uy} rather than {XI,X2}, {xl,x2} and {ul,u2}, respectively.

The element displacement field of a generic particle originally at (X, Y) is defined by the

two components ux = ux(X, Y) and uy = uy(X, Y). Three in-plane PK2 stresses con-

tribute to the strain energy and four displacement gradients appear in the corresponding

GL strain. Consequently nd = 2, ns = 3 and ng = 4. The four displacement gradients are

arranged as

{gl } {Oux/OX}

g2 Our/OX (5.7)
g = ga = Oux/OY

g4 Ouy/OY

13



The strain measures chosen are the three components ei (i = 1,2,3) of the GL strains
defined in the usual manner:

{1}o_\1[g21 0 g _gl Tel = exx = gl + + g_) = +

0

IOl:oe 2 = egy = g4 + !(g2 0 +
1 T

1

e3 = exy + eyx = g2 + g3 + gig3 + g294 = 1

0

1

0

0

0

g+ ½gT

0

1

0

0

0

0

0

0

0

0

1

0

0 0

0

0

0 0

0 0

1 0

0 1

0 1

0 0

0 0

1 0

g, (5.s)

g, (5.9)

(5.1o)

from which expressions for hi and Hi (i = 1, 2, 3) follow. For brevity, only the derivation

of the tangent stiffness matrix will be described. Begin by forming the vectors

bl = b2 = 0 b3 = 1 + g4
' ga ' 1 + gl "

0 1 + g4 g2

(5.11)

Then from (4.22) we get the core stiffness

S = Eijbib T + sini = SM + Sa, (5.12)

o
where si = s i + Eijej, (i, j = 1, 2, 3), are the PK2 stresses in the current configuration.

In full and using the abbreviations al = 1 + gl, a4 = 1 + g4 we get

SM----

E11a_ 'k 2E13alg3 + E33g_ Ellalg2 q- E13(ala4 + g2g3) -'k E33a4g3

Ellg_ + 2E13a4g2 + E33a_

8ymm

E12alg3 + Elaa_ + E2ag23 + Ea3alga

E12g2ga + E13alg_ + E23a4g3 + E33ala4

E2:g_ + 2E23alga + Ea3a_

SG----

,S1

8yrnrn

0

st

El_ala4 + E13alg2 + E_3a4g3 + Ea3g_g3"]

El_a4g2 + E13g_ + E23a] + E33a4g2 JE22a4g3 + E23(ala4 + g2g3) + Ea3alg2

Ez_a_ + 2E23a4g2 + E33g_

sa 0

0 s3

s2 0

82

(5.14)
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5.3 Plate Bending

This is similar to the previous example in that the structure is a flat thin plate but now

motion in 3D space {X, Y, Z} is allowed. With this increased freedom the plate is capable

of membrane stretching and bending. For the latter a Kirchhoff mathematical model is

assumed. The three energy-contributing GL strains are now functions of six gradients.

Consequently nd = 3, ns = 3 and ng = 6. The contributing gradients are arranged as

The three GL strains are defined as

// UXJaX
g2 COuy/cgX

g3 Ouz/OZ

g4 = Oux/OY

g5 COuy/ OY

, g6 Cguz/cgY

(5.15)

1 2e, = exx = 9, + + + =

'1 T

0

O lgT
0 g+_

0

0

1 0

0 1

0 0

0 0

0 0

0 0

0

0

1

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0

g, (5.16)

'0' T

0

0 1 gT
0 g+_

1

0

"0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

1

0

0

0 0"

0 0

0 0

0 0

1 0

0 1

g, (5.17)

ea = exy + eyx = g2 +g4 +gig4 +g2g5 +g3g6 = '

'0'

1

0

1

0

,0

T

1 T
' g+5"g

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0"

0 1 0

0 0 1

0 0 0 g'

0 0 0

0 0 0

(5.18)

which define hi and Hi, i = 1, 2, 3. When one reaches this level of bookkeeping it is more

expedient and less error-prone to obtain the core matrices through symbolic manipulation.

For example, the following Macsyma program forms SM and S_ in matrices SM and SG,

respectively:

hl : matrix(J1], [0], [0] , [0], [0] , [0])$

h2: matrix(J0] , [0], [0], [0], [1], [0])$
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h3: matrix([0],C1],[0],[l],C0],[0])$

g: matrix ( [gl], [g2], [g33, [_], [g5], [g6] )$

HHI :matrix(It,0,0,0,0,0], C0,1,0,0,0,0], [0,0,1,0,0,0] ,

Co,o,o,o,o,o], [o,o,o,o,o,o], [o,o,o,o,o,o])$

HH2:matrix([0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0],

Co,o,o,i,o,o],[o,o,o,o,I,o],[o,o,o,o ,o,i])$
HH3:matrix(C0,0,0,1,0,0], C0,0,0,0,1,0], [0,0,0,0,0, I],

CI,o,o,o,o,o], Co,I,o,o,o,o], Co,o,I,o,o,o] )$

bl:hl+HHl.g$ b2:h2+HH2.g$ b3:h3+iIH3.g$

SM :E1 I* b 1.transpose (bI)÷E22*b2. transpose (b2) +E33*b3. transpose (b3)

÷ El2* (b 1.transpose (b2) +b2. transpose (b1))

+ El3* (bl. transpose (b3) +b3. transpose(b1) )

+ E23. (b2 .transpose (b3) +b3 .transpose(b2) )$

ratvar s(g6, g5, g4 ,g3 ,g2, gl, a5, al, E11 ,E12 ,E13, E22 ,E23 ,E33) $

SM :rats imp (SM) $

SG :rat simp (sI*HHI÷s2*HH2+s3*HH3) $

These matrices may be automatically converted to TEX by appropriate Macsyma state-

ments (not shown above). That output was reformatted by hand for inclusion here. For

the core tangent stiffness this semi-automated process yields

SM(1, 1) = E33g24 + 2E13(1 + gl)g4 + El1(1 + gl)_

SM(1,2) = E_3((1 + gl)(1 + gs) + g2g4) + E33g4(1 + gs) + E_(1 + g,)g_

SM(1,3) = Ez3((1 + g_)g6 + g3g4) + E3394gs + E_I(1 + gl)g3

SM(1,4) E 2= 23g. + E3_(1+ 9_)g4+ E12(1+ gl)94 + E13(1+ g.)_

SM(1,5) = E12((1 + gl)(1 + g_)) + E:_g_(1+ g_) + E_g_g_ + E,_(1 + g,)g_

SM(1,6) = En(1 + g_)g6 + E_3g4gs + E33g3g4 + E_3(1 + g_)g3

SM(2,2) = E_(1 + g_)_ + 2E_g_(1 + g_) + El_gl

SM(2,3) = E_(1 + g_)g_+ E,_(g_g_+ g3(1 + g_))+ E,_g_g_

SM(2,5) = E2_(1+ g_)_+ E_3g_(1+ g_) + E,2g_(1 + g_) + E_a_

SM(2,6) = E_a(1 + g_)g_ + E_:g_gs + Eaag_(1 + g_) + E_ag_g3

S:,,(3,3) = E33g_ + 2E_3g3gs + Eng'3

SM(3,4) = Ea3(1 + gl)gs + E_3g_g_ + El__g3g_ + E,a(1 + gl)g_

SM(3,5) = E_3(1 + g_)9_ + E33g2g_ + El_g3(1 + g_) + E_3g_g3

SM(3,6) E= _3g_ + E33g3gs + E_2g3g6 + E_3g_

SM(4,4) E= _p_+2E_(1 +_)g_+ E_(I+gl)_

SM(4, 5) = E_3((1 + g;)(1 + g_) + g_g4) + E_g_(1 + g_) + Eaa(1 + g,)g_

sM(4,6) = E2_((1 + g_)a_ + a_a_)+ E_g_a_ + E_(1 + g, )a_

S.(5,5) = E_:(_ + a_)2 + 2E_3g_(1+ g_) + E_a_

_M(5,6) = E2_(_+ a_)a_+ E_._(a_a_+ a_(1 + g_)) + E_a_a_

SM(6, 6) E _ E= _gs + 2E_ag_g6 + aaga

(5.19)

(which can be further compacted by introducing the auxiliary symbols a, = 1 + g_ and
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Figure 1 Kinematics of 2D Timoshenko beam element

as = 1 + gs as done in Section 5.3) and

SG = SGp =

sl 0 0 Sa 0 0

0 sl 0 0 sa 0

0 0 .sI 0 0 .53

Sa 0 0 s2 0 0

0 Sa 0 0 s2 0

0 0 sa 0 0 s2

(5.20)

REMARK 5.1. If the plate element to which the particle belong has (as usual) rotational free-

doms, all additional geometric stiffness (the complementary geometric stiffness) appears in the

transformation phase. Because of this, the core geometric stiffness (5.20) has been relabeled as

Sop, where subscript P means "principal."

REMARK 5.2. The core stiffness matrices may also be used for part of the formulation of thin-

shell facet elements, with the proviso that global reference axes {X, 1i, Z} are to be replaced by a

local coordinate system {X, Y, Z} with Z normal to the element midplane.

5.4 2D Timoshenko Beam

Consider next an isotropic Timoshenko plane beam that moves in the (X,Y) plane. For

notational simplicity it is assumed that the longitudinal axis of the beam is aligned with X.

The only PK2 stresses that contribute to the strain energy are the axial stress Sl --- sxx

and the mean shear stress s2 - axy. The corresponding GL strains are the axial strain

17



el =-- exx and the section-averaged shear strain e2 --- 7xY = exy + eyx. The constitutive

equations are sl = s o + Eel and s2 = s o + Ge2, where E and G are the Young's modulus

and shear modulus, respectively, of the material. The treatment outlined below is slightly

modified from that of a course term project by Alexander, de la Fuente and Haugen. 1°

The finite displacements are described in a local coordinate system that is attached to

the initial position of the beam, as illustrated in Figure 1. Under the usual kinematic as-

sumptions of the Timoshenko beam model (plane sections remain plane but not necessarily

normal to the deformed centroidal axis) the coordinates of a particle in the underformed

and deformed configurations may be written

x x0+,x0{ }0,
{x+u0x}[cos0sin0]x = x0 + RT¢, X0 = , = (5.22)

Uoy sin8 cos8 '

where u0x and uoy are the components of the centroidal displacement vector u0. Sub-

tracting (5.21) from (5.22) gives the element displacement field

u_x_X= {ux}___ { Uox-YsinS}uy Uoy + Y(cosS- 1) " (5.23)

Four displacement gradients contribute to the GL strains. Thus for this case we have

n d : 2, n s -- 2 and n 9 = 4. The four contributing displacement gradients are arranged in

/gl// uXj0X}g2 Ouy/OX

g = g3 = Oux/OY "

g, Ouy/OY

the usual pattern:

(5.24)

For future use in Section 9 we note that the gradients can be written in terms of generalized
section freedoms as

9_ = 7 - Yx sin 0 (5.25)
g = g3 - sin 0 '

94 cos O -- 1

in which e = Ouox/OX is a generalized axial strain, 3' = Ouov/OX a generalized shear

strain, and _ = O0/OX is the beam curvature.

The matrix form of the GL strains is

001_92 0 a T 1 0 0
el = gl q- _ 1 "_-g2) _ = 0 g + _g 0 0 0 g'

0 0 0 0

(5.26)
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1 _ r 0 0
e2 =g2÷ga+glga+g2g4= 1 g + _g 0 0

0 1 0

which define hi, h2, H1 and H2. On introducing the auxiliary vectors

g, (5.27)

1 + g4 C1 = c2 = + _g4 (5.28)
bl = , b2 = 1-4-gl ' 0 ' 1-4-_gll ,

0 g2 0 ½g2

the spectral core stiffness matrices and internal force vector can be written

S U = ECl cT + Gc2c T -4-s°H1 + s°H2, (5.29)

1 0 1 o
S r ---- EClC T W ac2c T 4- _(Sl 4- sl)H1 4- _(s 2 4- s2)H2, (5.30)

S ---- SM 4- SGp, SM ----Ebib T 4- Gb2b T, SGP ---- 81Hi 4- s2H2, (5.31)

= Slbl 4- s2b2. (5.32)

Because beam elements have rotational freedoms, a complementary geometric stiffness

matrix appears when carrying out the transformation phase. This term is considered in

the subsequent GCCF treatment of this element in Section 9.

5.5 3D Timoshenko Beam: Kinematics

The last example of derivation of core equations involve a TL 3D Timoshenko beam capable

of arbitrarily large rotations. The following material is largely extracted from a recent

paper by Crivelli and Felippa v as well as Crivelli's thesis s and is continued with the DGCCF

transformation phase in Section 10. The notation used in those references has been slightly

edited to fit that of the present article.

As in the 2D case, the beam is isotropically elastic with Young's modulus E and shear

modulus G. The reference configuration of the beam is straight and prismatic although not

necessarily stress free. A local reference frame ni is attached to it, with nl directed along

the longitudinal axis (the locus of cross section centroids). Axes n2 and n3 are in the plane

of the left-end cross section; these will be eventually aligned with the principal inertia axes

to simplify some algebraic expressions. Along these axes we attach the coordinate system

{X, Y, Z}. This description is schematically shown in Figure 2. We further define a set

of moving frames, denoted by {al,a2,a3}, parametrized by the longitudinal coordinate

X. Initially these frames coincide with {nl, n2, n3}, and displace rigidly attached to the

cross-sections of the moving current configuration.

A beam particle originally at (X, Y, Z) displaces to

x(X)=xo(X)+RT(X)_(Y,Z), _T=[0 Y Z], (5.33)
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Kinematics of 3D Timoshenko beam element

where x0 describes the position of the centroid of the given cross-section, R is a 3-by-3

orthogonal matrix function that orients the displaced cross section, and _ is a cross-section

position vector. The displacement field is

u=x-X=u0+(R T-I)_. (5.34)

where u0(X) = x0(X) - X0(X) is the centroidal displacement (see Figure 2).

In the sequel 3 x 3 skew-symmetric matrices are consistently denoted by placing a tilde

over their axial 3-vector symbol; for example

= spin (a) =

0 a3 --a2

--a3 0 a 1

a2 --al 0
{el}a = a 2

a3

= axial (_). (5.35 )

The skew-symmetric curvature matrix _ is defined by k = R(dRT/dx), which is the rate

of change of the orthogonal rotation matrix R with respect to the longitudinal coordinate.

The curvature vector is _ = axial (k). We shall also require later the variation of angular
orientation GO, defined as the axial vector of the skew matrix R(_RT:

/_'O = R_R T = -_RR T, (_O = axial (_-'O), (5.36)
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All displacement gradients gij appear in the GL strain measures. To maintain compactness

the nine gradients are partitioned into three 3-vectors:

gl = Ouy /OX , g2 = Ouy /OY ,

Ouz/OX Ouz/OY

The 9-component gradient vector is gT = [glT gT

directly here. Also introduce the 3-vectors

{0}h_ = 0 , h2 = 1 ,

0 0

Oux/OZ }
g3 = OUy/OZ , (5.37)

Ouz/OZ

gT], but this symbol is not used

{0}h3 = 0 . (5.38)

1

With the help of these quantities, explicit expressions for the displacement gradient vectors

g can be given as
duo duo

g' = d--Z+ Rr _¢ = d--Z+ RrCr_' (5.39)
g2 = ( RT -- I)h:, ga = ( RT- I)ha.

The only nonzero components of the GL strain tensor can be written
1 T

el = ell = hTgl + _gl Hgl,

1 _gT--e2 _ "/'12 = 2e12 = hTgl + hTg2 + _( 1 ng2 + gTHgl), (5.40)

1 T
ea = 71a = 2e13 = hTgl + hlTga + _(gl Hg3 + gTHgl),

where H is here the 3 × 3 identity matrix. Note that from the orthogonality of the rotation

matrix R we find
1 T

e22 = hTg2 + _g2 g2

=a_2-1+1(a_, +(R=-I) 2+R_a)=R=-l+½(2-2R_)=0, (5.41)
2e 3= h g, + +

= R,2 + R2a + R21R31 + R22Ra2 - Ra2 + R2aRa, - R2a = O,

and similarly ea3 = 0. This confirms that the only nonzero strains are (5.40).

The strains (5.40) may be rewritten in a more physically suggestive form:

el = ell = eb + ef, 7 = _'12 Jr- '_13,

 u0)1 e2 = 712 = 75 + _2 = aTe + hT_ T
eb = \ dX ] hl + 2 dX '

el = ¢T]¢_ + ½_T_Tt¢ _ ¢TK:,, e3 = 713 = 73 + Ta = hT_ b + hT_ T_"

Here eb, ef are stretching and flexural normal strains, 72 and 73 represent bending-induced

shear strains, and 72, ?'3 are torsion-induced shear strains. The last term in e I represents

a squared-curvature contribution to flexure, which can usually be neglected (cf. Remark

9.'2-). The strain energy stored in the current configuration is

/ f 1 2 1 G (e_ +ea_)+ sOe1+sOe12 +sOea. (5.43)U= LldAdX, with b/=_Ee 1+-_
JL 0 JA o
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5.6 3D Timoshenko Beam: Core equations

The PK2 stresses associated with the GL strains (5.40) are sl - sll = sxx, s2 - s12 =

sxy and s3 =- sis = sxz. The constitutive equations are sl = s ° +Eel, s2 = s o +Ge2 and

s3 = s o + Ge3. The spectral core stiffnesses can be compactly expressed in terms of the
1

vectors ci = hi + _Hg i and bi = hi + Hg i for i = 1, 2, 3, where no subscript is needed in

H - I. Applying the spectral formulas of Section 4.4 we obtain for the 9 x 9 core energy
stiffness

S U =

"ES + G(S[+ GS[
GS[ 0

0

[s°H s°H s0H]

+|s°H 0 0J[s°n o
(5.44)

where S v = (:l eT, S U -- e2 eT, S U _- e3¢ T, S U = C2CT and S U ---- C3 cT. At the residual

0 i 1,2,3level we obtain for S r a form similar to (5.44) except that the prestresses s i , =
1 0

have to be replaced by the midpoint stresses 7(si +si). The internal force vector conjugate

to ag is • = Srg + q,0 = _ + ,I_r, in which

{ 161)b2+s363)• _ = 0 _,- = s2bl ,

0 s3bl

(5.45)

represent the contribution of the normal and shear stresses, respectively.

The principal core tangent stiffness matrix S = SM + Sap is obtained from (4.22). The
material stiffness is

SM----

ESI+G(S2+S3) GS4 GS5

GS T GSl 0

GS ff 0 GS1

(5.46)

where $1 = bib1 T, $2 = b2b_, $3 = b3b_, $4 = b2b_ and $5 = bsb_. The principal

geometric stiffness is

SGp =

sill s2H s3H"

s2H 0 0

s3H 0 0

[(s °+Eel)H (s °+Ge2)H (s °+Gea)H

= |(s O+Ge2)H 0 0

L (so + Ge3)H 0 0

(5.47)

The contribution of (_2g)T_ to the complementary geometric stiffness depends on the

target variables in the ensuing transformation phase. Because this transformation requires

the DGCCF, it is taken up in Section 10 after the GCCF is discussed in Section 8.
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6. DCCF TRANSFORMATION TO PHYSICAL FREEDOMS

The core stiffness matrices and internal-force vector given in (4.19)-(4.22) and (4.13),

respectively, pertain to material particles of the structure. The behavior of each particle

is expressed in terms of its displacement gradients collected in vector g. To create a

discrete model the structure is subdivided into finite elements. Finite elements equations

in terms of the physical DOFs collected in vector v are constructed through a combination

of core-to-physical transformations and integration over element domains.

In this section we stay within the scope of the Direct CCF by assuming that the transfor-

mations between g and v are linear. Because all subsequent developments pertain to an

individual element, no element identifiers are used to reduce indexing clutter.

Over an individual element the displacement field u T = (ul, u2, u3) is interpolated as

u = Nv, (6.1)

where v now collects the element node-displacement degrees of freedom (DOFs) and N =

N(X1,X2,X3) is a matrix of shape functions independent of v. Differentiating (6.1) with

respect to the Xi and taking the first two v variations yields

g = Gv, /fg = G (_v, (_2g = 0, (6.2)

(for the last one see Remark 4.1). Invariance of the strain energy variations _U and _2U

obtained by integrating (4.7)-(4.8) over the element reference volume yields

K U = / GTsuGdVo,
J Vo

Kr = /voGTSrG dVo, K = /voGTSG dVo,

p= /yoGT_ dVo, P° = /voGT_° dVo,

(6.3)

t"

f = JvoGTO dVo, (6.4)

Although the dependency of S I_'et and • on g is not made implicit in these equations,

it must be remembered that the transformation g = Gv also appears there. Because of

the ensuing algebraic complexity, numerical integration is generally required unless the

gradients are constant over the element.

Often G is expressed as a chain of transformations, some of which are position dependent

and xealain inside the element integral whereas others are not and may be taken outside.

For example, in the bar element treated below, G = T G, where G transforms g to local

node displacements while T transforms local to global node displacements.
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7. DCCF TRANSFORMATION EXAMPLES

7.1 The Bar Element

The core equations for a geometrically nonlinear TL bar were derived in Section 5.1.

These equations are now applied to the formulation of a two-node, linear-displacement,

prismatic TL bar element. The element has constant reference area A0 and initial length

L0. The two end nodes are located at (Xl, ]I1, Z1) and (X2, Y_, Z_), respectively. The node

displacements are (vxl, VY1, VZ1 ) and (vx2, vy2, vz2 ).

local coordinates {X, Y, Z} may be interpolated as

The element displacement field in

fi = _y = Nx 0 0 N2 0

fiz 0 N1 0 0 N2 { _X1 }

uY1

_X2

vy2

OZ2

=Ng, (7.1)

where N1 = 1 - f(/Lo and N2 = f(/L are linear shape functions.

respect to the reference coordinate we get

1 [--1 0 0 1 0

[00-1 0 0 1
G= o7" 0 -1 0 0

0

0 9= 1Gq,

1 Lo

Differentiating with

(7.2)

This transformation may be applied to the core matrices and vectors derived in Section

5.1. For example, application to the core tangent stiffness (5.6) yields

b2 - L_ool/vo (]Ts(_ dVo = _oA°GT(EbbT + sH) 1_, (7.3)

Finally, transformation to node displacements (VXi,VYi , VZi), i = 1,2 is handled in the

usual manner by writing the local-to-global transformation equation

fl ---- fly

_z

Txx
-- Tyx

Tzx
{ux}Trr Tyz | ur

Tzy Tzz J uz

= Tu, (7.4)

which is valid for both end nodes giving 9i = Tv, i = 1,2. Consequently the element

tangent stiffness matrix in local coordinates is given by

(7.5)o] [K = _o TT (_]T(EbbT + sH)l_l T0

For this simple element all entries may be obtained in closed form and no numerical

integration is necessary. An efficient implementation of the tangent stiffness matrix (7.5)

in the form of a Fortran subroutine is given in Appendix 2. This implementation forms K

with approximately 160 floating point operations.
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7.2 Iso-P Plane Stress Element

For the case of plane stress considered in Section 5.2, we shall asume that the associated

finite elements are isoparametric displacement models with n nodes, and that (as usual for

such models) the nodal freedoms are of translational type. The transformation to physical

DOFs can then be handled within the purview of the DCCF.

As in Section 5.1, the reference system, current system and in-plane displacement com-

ponents are denoted by {X,Y}, {x,y} and {ux,uv}, respectively. The element nodes

are located at {Xi,Yi}, (i = 1,... n) in the reference configuration Co and move to

{xi = Xi + uxi, yi = Yi + uyi}, (i = 1,... n) in the current configuration C. The

element displacement field may be expressed as

VX1

vY1

, Vyn ,

in which Ni are appropriate isoparametric shape functions written in terms of natural

coordinates such as _ and rI for quadrilaterals. The G matrix follows upon differentiation

with respect to X and Y, and all core equations transformed as per (6.3)-(6.4). For

example, the physical tangent stiffness is

K = /voGT(SM -{- Sa)GdY,
(7.7)

where SM and SG are given by (5.13) and (5.14), respectively. As in the case of linear

elements, (7.7) is most conveniently evaluated by numerical integration. Because several of

the integrand matrices are sparse, in the interest of efficiency in the computer implemen-

tation the integrand may be symbolically evaluated through a computer algebra system

such as Macsyma, Maple or Mathematica, and automatically converted to Fortran or C

program statements before being encapsulated in the Gauss quadrature loop.

8. THE GENERALIZED CCF

As discussed in Section 2, the Generalized Core Congruential Formulation or GCCF is

required when the relation between displacement gradients g and finite element degrees

of freedom v is nonlinear. This complication occurs in elements with rotational freedoms,

such as beams, plates and shells, if finite rotations are exactly treated.

Recall the expression (4.8) of the second variation 52U of the internal energy density. This

expression has the core tangent stiffness S as kernel of the quadratic form in 5g. The core

internal force • also appears in the inner product (62g) T _. This second term may either

survive or drop out depending on the relation of g with the target physical or generalized
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coordinates (the latter term is explained below) chosenin the CCF transformation phase.
In the caseof the DCCF, this term drops out and

S -- S M + S G (8.1)

is the tangent core stiffness, which forward transforms as per (6.3). This is the situation

considered so far. But if that term survives two things happen. First, (8.1) is relabeled as

S _ S M AV SGp , (8.2)

in which S and Sop are called the principal core tangent stiffness and principal geometric

stiffness, respectively. Second, transforming the term (62g)T_I_ to freedoms v produces a

extra term in accordance with the schematics

K = KM -b KGp -k KGC, SM --* KM, SGp --4 KGp, (_2g) T {I_ H _vTKGc _V, (8.3)

where ---. and _-, symbolize DCCF-transformation and GCCF-transformation-styles, re-

spectively. As can be seen the transformation phase produces a new term KGc called

the complementary geometric stiffness. That term cannot be expressed in terms of the

variation 6g of the displacement gradients. Consequently there is no "core complementary

core geometric stiffness" Sac that can be added to (8.2). Instead it appears as a "carry

forward term" that materializes as a quadratic-form kernel upon transforming.

8.1 Generalized Coordinates as Generic Target

For elements that require the GCCF treatment a one-shot transformation between g and

v is often replaced by a multistage transformation. The degree of freedom sets used as

intermediate targets of this process will be collectively referred to as "generalized coordi-

nates" and identified as q. Of course the final target: element node displacements v, is a

particular instance of such array of choices.

In Section 2 it was noted that two variants of the GGCF, qualified as algebraic and differen-

tial, should be distinguished in terms of consequences on the existence of physical stiffness

equations at various variational levels. These variants are examined below. The ensuing

development examines the transformation from displacement gradients g to a "generic

target" set of generalized coordinates qi collected in vector q. These coordinates are as-

sumed to be independent, a restriction removed later. Symbols K and f are used to denote

tangent stiffness matrices and internal force vectors, respectively, in terms of q.

8.2 Algebraic Transformation

The,Algebraic GCCF, or AGCCF, applies if the relation between g (source) and q (tar-

get) is nonlinear but algebraic. We have g = g(q) or in index notation, g_ = g_(qj).

Differentiating with respect to the q, variables yields

Og_

6gi - Oqj_qj = G,j6qj, or 6g = G_q,

(8.4)

- 02gi _qj6qk + Ogi 62_j=20
62gi OqjOqk _qj Fijk_qj_qk, or 62g = (F6q) 6q,
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Here (F6q) is the matrix Fijk 8qk = Fkij 6qk; F being a cubic array. The array G receives

the name tangent transformation matrix. The second term in the expansion of 62g i vanishes

because the qi are assumed to be independent target variables.

Enforcing invariance of 52 U yields the tangent stiffness transformation

+ = + + = + (8.5)

where the entries of Q are (cf. Remark 4.1) Qii = Qi, = Fkii(I)k with summation on

k -- 1,... ng. Note that Q is symmetric because Fkij = Fkji. Integration of q over V0

yields the complementary portion Kcc of the geometric stiffness KG.

The internal, applied and prestress force vectors transform according to the formulas in

(6.4) with the G defined in (8.4):

f = [ GT_ dYo,
J Vo

p= /voGT_ dVo, p° - /yoGT_° dVo. (8.6)

What happens to K U and Kr? They can be obtained, somewhat artificially, by construct-

ing the matrix equation

g = Wq, (8.7)

where W is called a secant transformation matrix. Generally this matrix is far from unique

because its ng x nq entries must satisfy only ng conditions. (Care has often to be given to

the qj ---, 0 if 0/0 limits appear in W.) Using (8.7) we can proceed to form

KU=jfyoWTSuWdVo , Kr=_GTsrWdVo. (8.8)

Because in general W -_ G, symmetry in the secant stiffness K" cannot be expected even

if S r is symmetric.

REMARK 8.1. The AGGCF is applicable to finite elements with degrees of freedoms that in-
clude fixed-axis rotations, because such rotations are integrable. Examples are provided by two-

dimensional beams as well as plane stress (membrane) elements with drilling freedoms if only

in-plane motions are allowed.

REMARK 8.2. Why is Kcc called a geometric stiffness? Because it vanishes if the current

configuration is stress free, in which case the core internal force • vanishes and so does Q.

8.3 Differential Transformation

The Differential GCCF, or DGCCF, is required if the relation between g (source) and q

(target) is only available as a non-integrable differential form between their variations:

tSgi = Gij_qj, or 6g = G6q,

OGij 6qj 6qk = Fijk 6qj 5qk,
62gi = Oq"-"-k

or 52g = (FSq) Sq.
(8.9)
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The transformation equation (8.5) still appliesfor K whereas (8.6) holds for the force vec-

tors. But no integral g = g(q) as in the AGGCF exists. Consequently K v and K r, which

require a secant matrix relation of the form (8.7), cannot be constructed. Furthermore

Q is not necessarily symmetric; a condition for that being Fkij = Fkji or equivalently

OGki/Oqj = OGkj/Oqi.

REMARK 8.3. For mechanical finite elements the DGCCF naturally arises when three-

dimensional finite rotations are present as nodal degrees of freedom, because such rotations are
non-integrable.

REMARK 8.4. The relations (8.9) have points of resemblance with the case of non-holonomic

constraints in analytical dynamics.

8.4 Multistage Transformation

Up to this point the q have been assumed to be independent variables. But as previously

noted, for complicated elements the GCCF transformations are more conveniently applied

in stages. The target variables in one stage become the source variables for the next one.

What happens if the q are intermediate variables in a transformation chain? If the q

are linear in the final independent degrees of freedom v, all previous formulas hold be-

cause the DCCF applies for the remaining transformations, which are strictly congruential.

But if the q are nonlinear in v, or only a non-integrable differential relation exists, term

(Ogi/Oqj) _2qj = Gij _2qj in the second of (8.4) survives. The net effect is that the geo-

metric stiffness acquires a higher order component, implicitly defined as the kernel of

/Vo _iGij $2qj dVo, (8.10)

This term cannot be resolved ( "resolution" meaning explicit extraction of its stiffness kernel

in the form of a complementary geometric stiffness) until the transformation chain reaches

downstream variables that either are the final degrees of freedom (and thus independent),

or depend linearly on such. It is difficult to state detailed rules that encompass all possible

situations. Instead the treatment of the 2D and 3D beam element transformations in

Sections 9-10 illustrates the basic techniques for "carrying forward" terms such as (8.10).

9. A 2-NODE 2D TIMOSHENKO BEAM ELEMENT

We continue here with the derivation of a 2D, isotropic Timoshenko beam element started

in Section 5.4. This example serves to illustrate the Algebraic GCCF. The specific element

constructed here has two end nodes, six degrees of freedom, and reference length L0. The

cross section area A -= A0 and moment of inertia I = fA Y_ dA are constant along the

element. Axis X is made to pass through the centroid so that fAY dA = 0. Furthermore

it is assumed that the cross section is doubly symmetric so that fA y3 dA = O.
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The element displacement field, defined by uox(X), uoy(X) and O(X), is interpolated with

linear shape functions:

Uox }
troy

0

N1 0 0 N2 0 0

0 N1 0 0 N2 0

0 0 N1 0 0 N2

e

l)xl [

Vyl

O1 = Nv,

Ux2 J
Yy2

, 82

(9.1)

where N, = 1 - (X/Lo) and N2 = 1 - Na = X/Lo. Consequently

OaOX YX2 -- UXa OUoy vx2 -- vX1 00 02 -- 01

e- OX Lo ' 7- OX - Lo ' _- OX - Lo ' (9.2)

are constant over the element.

9.1 Generalized Coordinates and Stress Resultants

As intermediate set of generalized coordinates we take qT = [e 7 _; 0]. These four

quantities are constant over each cross section and may be viewed as cross-section orien-

tation coordinates. Consequently when obtaining stiffness matrices and internal forces in

terms of q it is convenient to integrate over the beam cross section. The resulting quanti-

ties appear naturally in terms of cross section stress-resultants as shown below. In terms

of these generalized coordinates the auxiliary vectors bi listed in (5.28) become

/::1}{51 =

0
+Ycos0){3}{sin0}7 - Yx sin 0 b2 = 1 + g4 = cos 0

0 ' l+gl l+e-YxcosO '

0 g2 7 - Yg sin 0

(9.3)

The well known stress resultants of beam theory are the axial force N, transverse shear

force V and bending moment M. They are obtained by integrating the PK2 stresses over

the beam cross section:

A 1 2 72 1EI_2 N ON= sldA=EA(e+7(e + ))+ + ,
0

v = fA s2dA = GA,w._ + V °,
0

M =/a slYdA = -EIxaJ_ + M °,
0

(9.4)

where w_ = (1 + e)cos0 + 7sin0 and w.y = 7cos0 - (1 + e)sin0 can be viewed as

generalized skew strains. In (9.4) N °, V ° and M ° denote initial-stress resultants (stress
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resultants in Co,also called prestressforces), A -- A0, I = fao y2 dA, and A, = /IA, in
which tt is the usual shear correction factor of Timoshenko beam theory. Because of the

doubly-symmetric cross-section assumption, a term containing the third-section-moment

fAo y3 dA has been omitted from the expression for M.

In addition to N, V and M, the following higher order moment, which is absent from the

linear theory, appears in the residual force and tangent stiffness:

]A slY2 da = EI((e + ½(e 2 + 7_)) + ½ET-lx _) + C °, (9.5)
C

0

in which "H = fAo y4 dA. If terms in _2 are neglected,

C - C O = (g - N°)(I/A) = (N - g°)r 2, (9.6)

where r = V/_ is the radius of gyration of the cross section. If such terms are retained

this relation is only exact if r 2 = 7-l/I and approximate otherwise.

REMARK 9.1. One may verify that fA s_YdA vanishes identically. This serves as a check of the
strain distribution equations.

9.2 Transformation Matrices

The differential relations required to establish the tangent transformation are obtained

from (5.25) as

i 0 -Ycos

0g 1 -Y sin0

5g = _qq 6q = 0 0

0 0

-1 0 0

Oq 1 0 -1 0

5q= _-Sv = L-'_ 0 0 -1

0 0 L0 - X

Ysin01{}-Y_ cos 0 ] 67

-cos0 ] 6x = Gx 5%

- sin 0 J 50

1 0 0

0 1 0

0 0 1

0 0 X
{ Svxl }

5vy1

(9.7)

= G_ 5v, (9.8)

The transformation relating 5g = G 5v may be obtained as the product

1
G = G1G2 =

L0

-1 0 Y(cosO+(Lo-X)_sinO) 1 0 Y(-cosO+X_sinO)]

0 -1 Y(sinO-(L0-X)ncosO) 0 1 Y(- sin O - Xn cos O)J0 0 -(L0-X)cos0 0 0 -Xcos0

0 0 -(L0-X)sin0 0 0 -Xsin0

(9.9)

but it is more instructive (as well as conducive to higher efficiency in the computer imple-

mentation) to perform the transformation phase in two stages.

Observe that the first transformation (from g to q) is nonlinear and algebraic whereas the

second one (from q to v) is linear. Consequently we have to use the AGCCF for the first

transformation but the second one can be done simply through the DCCF.
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9.3 Internal Force Vector

The internal force vector in terms of q, denoted by fq, is obtained from the core expression

(5.32) for @ and the matrix G1 given in (9.7):

fq = /Ao GT @ dAo = f_ N7 - M_ sin 0 + V cos 0f_ = -Mw, + C_ "

-Mtcw.y - Vw,

(9.10)

Finally, application of (9.8) and integration over the element length yields

1 q

fo L° -fq + 7Lof_ (9.11)f = GT2 fq dX = fq •

1+  Lof$

This vector satisfies translational equilibrium.

9.4 Tangent Stiffness Matrix

Transforming to generalized coordinates q produces three components of the tangent stiff-

ness matrix:

K q = f (GT(SM + SG)G1 + Q) dA = K_t + g_p + K_c. (9.12)
JA o

The entries of K_t, obtained through symbolic manipulation, are

K_(1, 1) = EA(1 + e) 2 + GA, sin 2 0 + EI_ 2 cos: 0,

g_t(1,2 ) = EA(1 + e)7- GA, sin0cos0 + EI_ _ sin0cos0,

K_t(1,3 ) = EI_ ((1 + e)(1 + cos 2 0) + 7 sin 0cos 0),

K_(1,4) = El_2w-r cos 0 + GA,_z_ sin 0,

K_t(2,2 ) = EAT 2 + GA, cos 2 0 + EI_ sin 2 0,

K_t(2,3 ) = EI_ ((1 + e) sin 0cos 0 + 3'(1 + sin' 0)), (9.13)

K]_(2, 4) = EI_2w_ sin 0 - GA_w, cos 0,

K_(3,3) = EIw, _ + ET-la 2,

I(],(3,4) = EI,¢ ((1 + e)7(cos 2 0-sin 2 0) + (_2 -(1 + e)2) sin 0cos0),

K_a(4,4) = EIx_'¢2g + GA._z, 2.

The principal geometric stiffness, which is readily worked out by hand, is
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N 0

= N

symm

-M cos 8 Mx sin 0 - V cos 0

-Msin0 -M_cos0-Vsin0

C 0

Cn 2

(9.14)

The new term contributed by the AGCCF to K q is the complementary geometric stiffness

K_c. Its source is the matrix Q introduced in Section 8.2. The entries of Q are Qi.i =

(02gk/OqiOqj)_k, where the components of g and cI, = slbl + s_b2 may be obtained from

(5.25) and (9.3), respectively.

The entries of Q were symbolically generated by the following Mathematica module:

OmatrixOf2DTimoBeamElement [eps_, gamma_ ,kappa_, thet a_, Era_ ,Gm_, Y_] :=

Module [{g, hl, h2 ,Hl, H2, el, e2, s i, s2 ,bl ,b2 ,phi, i ,j ,k},

q={eps ,gamma,kappa,theta_ phi={l, I, i, I};

g={eps-Y*kappa*Cos [theta] ,gamma-Y*kappa_3in[theta],

-Sin [thet a] ,Cos [thet a] - I} ;

gg={{g [[I]] } ,{g [ [2]] },{g [_]] },{g [[4]] }};

hl:{{l} ,{0} ,{0} ,{0}} ; h2:{{O} ,{I} ,{I}, {0}};

HI={{I,O,O,O},{O,I,O,O},{O,O,O,O},{O,O,O,O}};

H2={{O,O,I,O},{O,O,O,I},{I,O,O,O},{O,I,O,O}};

el=(Transpose [hi]. gg+ (1/2) *Transpose [gg] . H1. gg) [ [1,1] ] ;

e2= (Transpose [h2] . gg+ (1/2) *Transpose [gg] . H2. gg) [ [1,1] ] ;

sl:Simplify[Em*el] ; s2:Simplify[Gm*e2] ;

b i={ l+eps-Y*kappa*Cos [thet a] ,gamma-Y,kappa*Sin [thet a], O, O} ;

b2={-Sin [theta] , Cos [theta] , l+eps-Y*kappa*Cos [theta] ,

gamma-Y,kappa*Sin [thet a] } ;

phi=Simplify [sl*bl+s2*b2] ;

{]=Table [0, {4}, {4}] ;

For [i=l, i<:4, i++, For [j=I, j <=4, j++, For [k: l,k<=4, k++,

Q [[i,j]] =Q [[i,j]] + (D [D [g [ [k] ] ,q[[i]]] ,q[[j]]])*phi[[k]]]]] ;

Return [Q]

];

The output of thismodule was integrated over the cross section and pattern matched with

the expression of the stress resultants (9.4)-(9.5) to produce

K_c =

0

syrnrn

0 0 0

0 0 0

0 -Mw.y

-Vw_ + M,_w, - C,_ 2

which added to (9.14) yields the geometric stiffness

N 0
K_ = N

syrnrn

-M cos 0

-M sin 0

C

M_ sin 0 - V cos 0

-M_ cos 0 - V sin 0

-- m&o 7

-Vw. r + M,_w,
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Finally, the tangent stiffness in terms of q is K q = KM + KG. Denoting the entries of K q
pq

by Kij, i,j = 1,... 4 the tangent stiffness matrix K in terms of node displacements v is

formed through the DCCF transformation

Kql

_0 L°
K = GTKqG2 dX =

symm

"q-K12

-Kl 
1 q _Kqa + 1 q-K_3 + 7LoK14 7LoK24

Kl,
Kq2

K_ 2 Klqa !r _q-- 2 _OaXl4

_q
K22 K2q3 1 r L-q-- _ jt_OXX24

1 /-.2 _-'qIx_3 -- LoKq4 + _-_-,0._,-44

_K_a 1 .-q-- _LoK14

-K 3 1 q-- _LoK24
1 y2rcq

--/_'q3 2r _ _"0"'44

1 pq
K_3 + 7Lo//14

•q 1 K2q4I':23 + 7Lo
1 T.2 T.d'q

Kq3 + LoKg 4 + _J-_Oa'44

(9.17)

The above rule can be applied to KM and KG should separate formation be desirable, as

when setting up a stability eigenproblem. Using these schemes K can be formed at a cost

of approximately 300 floating-point operations per element, which is not too different from

the cost of a TL 3D bar.

If the reference configuration is not aligned with X, the preceding expressions apply to the

local system {X, Y}. A final local-to-global transformation step, similar to that discussed

for the 3D bar in Section 7.1, is then necessary. This step can be handled by a simple DCCF

transformation, because the finite rotation 0 remains the same in global coordinates.

REMARK 9.2. The foregoing exact expressions contain curvature-squared terms typically in the

combination I_ 2. This can be shown to be of order (r/R) 2 compared to other terms, where r

is the radius of gyration of the cross section and R -- 1/to the radius of curvature of the current

configuration. For typical beams (r/R) _ is 10 -6 or less; consequently all such tiny terms may be

dropped without visible loss of accuracy. For highly-bent extremely-thin beams, however, that

ratio may go up to 0.01 in which case the g_ terms might have a noticeable though small effect if
retained.

9.5 Can a Secant Stiffness be Constructed?

To attempt the construction of a secant stiffness K rq in terms of generalized coordinates q

one should obtain a secant matrix form of the relationship g = g(q). As noted in Section

8.2, such form is far from unique. One possible choice is

[i0ycos 0g2 = 1 -Y sinO 0
g = g'_ 0 0 - sin 0/0

g4 0 0 (COS 0 -- 1)/0

7

t_

0

=W,q, (9.18)
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Table 1. Internal energy and its variations for 3D Timoshenko beam element

Core

Particle

g

U 1 ToU gT_O=_g_ g+

_/,/= _gT(S_g + _o)

_2H = _gT S_g + _gT_

Section Gradients

Cross-Section
w

Section Orientation

Cross-Section

Z

Physical DOF

Whole Element
v

_U = _vTf

_2U =_vTK_v

which has the merit of not being too dissimilar from G 1. Note that some care must be taken

as regards some 0/0 limits. Then K rq = fA GTsrw1 dA, which may be easily worked out

in closed form but is unsymmetric. Because q is linear in v, the next transformation is

simply K r = f:0 GfKrqG2 dX which can be handled through a scheme similar to (9.17)

but with an unsymmetric kernel matrix.

10. A 2-NODE 3D TIMOSHENKO BEAM ELEMENT

We continue here the development of a two-node 3D Timoshenko beam element started in

Section 5.5. As can be surmised, the development is more complex and demanding than

for its 2D counterpart. Only a summary taken from Crivelli's thesis 5 and Crivelli and

Felippa 7 is presented here. The transformation phase to pass from the core equations to

the element nodal degrees of freedom is carried out in three stages:

1. From particle displacement gradients g to generalized gradients w at each cross sec-

tion. An integration over the cross section area is involved.

2. From generalized gradients w to cross-section orientation coordinates q. The rota-

tional parametrization is introduced at this stage.

3. From cross-section orientation to finite-element nodal degrees of freedom v. An inte-

gration over the element length, as defined by the shape functions, is involved.

These transformation stages are summarized in Tables 1 and 2, which together also serve
to define notation

10.1 Transformation to Generalized Gradients

The first set of target variables are the generalized gradients w(X) at each reference cross

section defined by the longitudinal coordinate X. The components of w are indirectly
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Table 2. Core-to-physicaI-DOFs transformations for 3D beam element

Core Level

Particle

g

S

Section Gradients

Cross-Section
w

7Z=jfA wT_dA
o

S = J(A wTSWdA
0

Section Orientation

Cross-Section
7.

f_ = zT_

Ks = zTsz + ,Sec,

Physical DOF

Whole Element
V

_o L° T
f = G_ f_ dX

fo"K = G_K. G. dX

6g = W _fw _iw = Z 6z _fz = G_ (iv

given through their first variation:
T

where _O, defined in (5.36), measures the variation of angular orientation. Because this

quantity is not generally integrable for three-dimensional motions, it is not possible to

express O as a unique function of the displacements. The variation of gl is

dgu0 T-Td_O (10.2)_gl = -22- + R ¢ _ + Rq _o + R_/'O_,:,

where we used the relation 5 _ = &iO/dX + k_50. On using the commutative law fib =

fiTa and Jacobi's identity _ = ffi - l_fi we may rewrite (10.2) as

_ g l 00_-_0 T - T O _ O-- -- + R ¢ --_ + RTycT_6o (10.3)

For the other gradient vectors we have tig 2 : (_RTh2 = RT_h2 = RTh2T_o and (_g3 =

T~T
R h 3 _O, which can be collected in matrix form as

[wil
_g3 0 Rrh T J _0 W3

_w = W tiw, (10.4)

where I is the 3-by-3 identity matrix and Wi are 3-by-9 matrices. The second variation of

g, which is required for the complementary geometric stiffness, is

T _ -Td60

+ RT_-o_T i® + 62RT _T + RT_T _2_, (10.5)

_2g 2 = (_2RTi2, (5293 = _2RTi3
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At this point it is appropriate to introduce the following section resultants:

= Aab + T °,

= p,A + Qo,

.AA_ = EIMce + _o,

.Ad,. = ptGIp_ + 2vt°,.,

Is =/A _T dA'
0

0

'r2 = G72h2, "r3 = G73h3,

K: e = _ _, (10.6)

Here P, Q, .Ad, and .Ad,. are axial forces, shear forces, bending moments and torsional

moments, respectively, at the current configuration C; T °, Q0, .A,_O and .Ad o are similar

quantities at the reference configuration Co; ps and pt are transverse-shear and torsion

coefficients that account for the actual shear stress distributions, respectively; and Is and

Ip are the cartesian and polar inertia tensors, respectively, of the cross section. Should

the axes Y and Z be aligned with the principal inertia axes the latter simplified to

I S =

0 0

0 122
0 0

0

0 ,

/33
Ip =

I22 + 133 0 0

0 133 0

0 0 122

(10.7)

Because the relation between g and w is of differential type the applicable transformation

rules are those the DGCCF, and no energy or secant stiffness survives. Thus only the

internal force vector 7_ and tangent stiffness ,$ associated with w are derived below.

Internal Force Vector. The generalized internal force vector is

7_=/A wTOdA=Z/A siWTbidA=7_a+7_T,
o i o

(10.S)

where T4._ and "R.,- are the contributions of the normal and shear stresses respectively.

Detailed calculations result 5 in the following exact expressions:

+

_)Td_ o.

_T

, "]_r =

RT _
_,- (10.9)

For small deformations in which the squared curvature may be neglected, R _ I, ¢ _ 111,

_ _ _ and &.AA_ _ 0. If these approximations are made,

_O"

_Ohl
_T

h 1 .,M_,

0 [°], _,._- .A_,.. (lO.lO)
_T

h_ c2
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These resemble the classic linearized theory equations. Furthermore observe that the term

pRT¢ corresponds to the internal force of the TL 3D bar.

Tangent Stiffness. For the tangent stiffness we have the decomposition

S = SM + Sap + Sac. (10.11)

Furthermore, since w is nonlinear in downstream variables, the complementary geometric

stiffness splits into two components:

SGC = Sac_ + ,_GCq, (10.12)

where Sac,,, and Sacq contains terms that depend on the first and second variations,

respectively, of R and _. The notation is suggested by the fact that ,Scow can be merged

into SGp to yield the geometric stiffness ,Saw = _-_GP _- _.._GCw, which is associated with

the generalized gradients w and independent of the rotational parametrization selected in

the next set of target variables q. On the other hand, the kernel ,Secq cannot be extracted

at the w level and must be carried forward to the q level because it is parametrization

dependent. Each of the components in (10.11)-(10.12) may be expressed as the sum of two

contributions, one from the normal stresses and one from the shear stresses:

SM : SMa -_- SMr, SGp -_ SGpa + SGPr, SGCx _- SGCza + _GCzr, X = W, q.

(lO.13)

Material Stiffness. The generalized core material stiffness is given by the congruential
transformation

o i o

(10.14)

Carrying out the algebraic manipulations one obtains

SMa --_ E

ARTIxR

syrnm

"RT(qs¢ T + t_TIst_)R RrkIs¢

symrn

0 ARTI±_

Ip Ip_ ,

A_TI±qb + kTIpk,

SMr = _G

RTkIs_ ]

cTIs_ [,

in which Ix =

The contribution RT_bcTR is the core material stiffness of a TL 3D bar.

(lO.15)

ooo]0 1 0 .

0 0 1

(10.16)

Geometric Stiffness due to Normal Stresses. It is convenient to work out together all

geometric stiffness terms produced by the normal stresses, i.e.

SGa = '_GPa q- SGCwa + _GCqa = 'SGwa q- SGCqa. (10.17)

37



The appropriate definitions are

SllWTHW 1 dA,

sllba 62g dA = 6wTSGcwa6W 4-.T(62R, 621¢),

(10.1s)

where .T contains Sacq as q level kernel. Carrying out the algebraic manipulations one

*SGwa -- SGPa 4- _GCwa :

T_ T

PI R A,t_

0

_ymm

(10.19)

obtains

The term PI corresponds to the core geometric stiffness of the 3D T1 bar.

The higher order term in (10.18) may be expressed as

}'=(62R, 62_) = 21,4_T¢621,¢+¢TR62RTk..il,4,,6qT (v(¢T.A4,,) + U(k.A,4=; _)) 6q,

(10.20)
Consequently

Sacq_ = v(¢TJt't_) + U(k.Jt4_,; ¢). (10.21)

Because the next-level target variables q include the finite rotation parametrization, matri-

ces V and U depend on that choice. They are the source of unsymmetries in the stiffness

matrices when certain rotational parametrizations are adopted, such as the incremental

rotation vector. If the rotational vector is chosen these matrices are symmetric.

Geometric Stiffness due to Shear Stresses.

geometric stiffness is

Sat = SGPr + 5aCwr 4-SaCqr

The appropriate definitionsare

_GPr -_ Lo

"_GCr -- fAo

The contribution of the shear stresses to the

-- _Gwr 4- SGCqr.

 ,2(WTHW2 + W2HWx) 4- ,3(wTHw3 + WsHW1) dA

(s1252 4- s13bs) 62g dA = 6wTSacw_6w + 9v_(62R, 62_).

Carrying out manipulations one obtains the surprisingly simple form for SG_

0 0

SGwr -- SGPr 4- SGCwr = 0

symrn

The terms due to the second variation of g become

jT" r = _T 62Re_ + .Adf 62_.

The kernel carried forward to the q level is

SccqT = + u(e;

(10.22)

(10.23)

(10.24)

(10.25)

(10.26)
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10.2 Transformation to the Rotational Vector

The second transformation stage passes from w to z, which is a vector of generalized

displacements, also associated with a beam section, which embodies the parametrization

of the cross section rotation:

z = dX dX o_ , 6z = dX dX 6o_ (10.27)

Here c_ denotes the rotational vector parametrization defined by the standard formulas

o_ = axial(&), R = exp(&T), (10.2s)

and which may be extracted from R by
w

fit = logR - arcsin(r) axial (RT - R), r = ½llaxial(R T - R)II. (10.29)
2r

Because only the variations of w are known the relation between w and z is also of

differential type:

_w = Zgz, or _w=
I 0 0
0 Y(z) -_

0 0 Y(z)

d 6o_
-3X-

,Sa

(10.30)

in which

sin lal (Y(a)- _ I+ I

sinlal_aa T 1-coslc_l~
I_1 ) I_12 ic_l2 c,. (10.31)

On applying the transformations (10.30) we find for the internal force and the material

and principal-geometric components of the tangent stiffness matrix:

fq -- zT('Ra + "_T), KMq = zT(SM)Z, KGPq -" zT(SGwZ. (10.32)

The materialization of the geometric stiffness terms *-_GCqa and SGCq,- for the rotational

vector needs additional work. We state here only the final result:

u(r; ,I,) =

0

syrnrn

0 0

0 0

U"

T(.AA,-) =

39

0 0 0
0 T_

symm T_

(10.33)



where

+ c4 rY&Oaa T + c6rTaaToaa T,

r aT
V1 =c2Mr +CaaM T +csaaTMr +c,(M,a T + cxTM,I)+caaTM,aa T,

,. d_ T d_ T d_ d_ T r d_
= -c3 2- r I

( )+ C8_"_" _ O_.A_ T + .A_rO_ T + _Td_rI + c9"_ O_o_T.A_rO_Oz T,

in which

(10.34)

sin c_ 1 - cos a
Cl -- _ C2 -- C 3 ---

Ol O_2

cl + 3c3 cl + 2c2

C4 _ 0_ 2 ' C5 _ 0_ 2 ' C6 --

1 + Cl 3c3 -- 2c2

C7 -- O_2 ' C8 ----- O_2 ' C9 --

sin a - a cos a

OL3

c3 + 4cs

Or2 '

C 5 -- 5c 8

_2

(10.35)

A similar approach can be taken with (10.30), which defines ._-_,. The tangent stiffness

matrix can be obtained by superposing all contributions.

10.3 Transformation to Finite Element Freedoms

The final stage introduces a finite element representation for the degrees of freedom. The

beam or beam assembly is divided into a set of two-node finite elements. Each of these

nodes has three displacement degrees of freedom and three rotational degrees of freedom

corresponding to the three {ax,ay,o_z} components of the rotational vector c_. Each

element in turn has twelve freedoms which are collected in the array v T = {Un o_n} T

where d, collects the six translational freedoms while o_,_ collects the six rotations. The

cross-section state vector z is approximated inside each element by

CI_n O_ n

= G_ v. (10.36)

where N is a matrix of linear shape functions. Since 5q = GzSv the final internal force

vector f and tangent stiffness matrix K of each element are obtained through the DCCF
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transformations

_0 L°
f T= G_ fz dX, K =

The choice of shape functions for the rotational

foL° dX. (lO.37)

vector poses some subtle questions. In

small-deflection analysis it is common practice to select all Timoshenko beam shape func-

tions to be linear in X. This choice obviously enforces nodal compatibility while pre-

serving constant curvature states. But for finite deflections a linear interpolation for the

rotational vector components cannot exactly represent a constant curvature state unless

the rotations are about a single axis (plane rotations). The same is true if the rotation

matrix R(X) is interpolated linearly. On the other hand, linear interpolation of Euler

parameters does preserve the constant curvature state. This motivated the development

of an interpolation scheme that starts from the 4 Euler parameters ei(X), i = O, 1, 2,3,

2 = 1 that orient the normal of a cross section at X. These are collected in the 4-vector

e = { e0 E1 e2 e3 }T. Given the eight end values e(0) and e(L) the interpolation that

can copy a constant curvature vector I¢ is found to be 5

= cos(t)-(1 tan(t) (10.38)tan(tL ) ,] smt ¢,L)

= z _v/'_. The constant curvature vector can be extractedwhere t = {tcX, tL 7_¢L, _ =

from the end values through the formula

1

= j32---L[(e--_)- 2e0(L)I)e(0)- @_6")- 2e0(0)I)e(0)J , (10.39)

This interpolation is then transformed to the variations in terms of the rotational vector.

Details are provided in Reference 5.

11. APPLICATION EXAMPLES

Several application examples solved with the Timoshenko beam elements are described

below to show that they do not suffer from the restriction to moderate rotations that

several authors attribute the TL description.

11.1 Cantilevered Beam under End Moment

This is a classic validation test for geometrically nonlinear beam and shell elements. A

cantilevered beam of initial length L0 is forced into pure bending by application of an end

moment M. The beam bends into an arc of circle with curvature _ = M/(EI) and end

rotation O_,,d = MLo/(EI). The test were run with E = 30.0 106 , G = E/2, A = 1,

I = 1/12, L0 = 1000, and M = 15708.4A, where A is a load parameter. The {X, Y} axes

are placed at the left end of the beam. The load scaling is chosen so that for A = 1 the beam

bends to a full circle of radius L0/(2zr) = 318.31. The results for the tip deflection obtained

using 10 elements along the length are shown in Table 3. The results for the 2D elements l°

and 3D elements s were essentially the same within solution acceptance tolerances. The

average number of full-Newton iterations per step was 4.
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Table 3 Computed solutions for plane cantilever beam under pure moment

Load level Numerical solution Analytical solution

•_ Xtip Ytip Otip Xtip ]/tip Otip

0.25 -362.74 637.29 1.57 -363.38 636.62 1.57

0.50 -1000.03 639.23 3.14 -1000.00 636.62 3.14

0.75 -1214.18 214.15 4.71 -1212.21 212.21 4.71

1.00 -999.18 0.00 4.71 -1000.00 0.00 6.28
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Figure 3. Cantilever under end shear: exact and computed responses

11.2 Cantilevered Beam Under Shear Load

A cantilever beam is now subject to a vertical tip load. The results obtained with 16 2D

Timoshenko TL beam elements in a term project by Abedzadeh, Mehrabi and Lofti 11 are

compared in Figure 3 with the analytical solution given by Mathiasson et.al, s The 2D

Timoshenko elements follow the exact solution without appreciable error.

REMARK 11.1. As noted in Remark 1.1, Mathiasson et. al. s reported fair to poor results beyond

moderate rotations in this problem using a TL-based 2D Hermitian beam element. The difficulty

can be traced to their use of an approximate expression for the curvature:

I!

Uy
_¢_ - (11.1)

[1+
where primes denote derivatives with respect to X, instead of the correct small-strain TL value

I II I

UXUydO 0' u_(1 + Ux)- (11.2)

dx [1+ (,,k.) +
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Figure 4. Buckling of cantilever column: load-displacement responses

The expression (11.2) rapidly losses accuracy as u_c and u_¢ increase. Since (11.1) usually overes-

timates the actual curvature, it tends to overstiffen the element.

11.3 Euler Buckling of Cantilever Column

This buckling example is taken from Mathisen's thesis. 12 The critical buckling load was

traversed by treating the bifurcation point as a limit point by introducing a slight geometric

imperfection. The following inputs were used in the study reported in Alexander et.al.l°:

L0 = 100, A = 0.05, I = 0.20, E = 106 , G = E/2 and applied load P = 49.34A. The

load response curves using the axial displacement as control variable are shown in Figure

4. The computed results agree well with elastica solutions up to deflections of the order of

the column length.

11.4 Large Displacement of a 45 ° Cantilever Bend

This 3D beam problem concerns the large displacement analysis of a 45 ° cantilever bend

initially lying on the horizontal {X,Y} plane. The bend is an arc of a circle of radius

r = 100 and the beam cross-section is a square with sides of unit length. The beam has

modulus E = 107 and Poisson's ratio u = 0. It is subjected to an end load P = 600 normal
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Figure 5. Curved cantilever bend under tip load: Problem definition

to the (X, Y) plane as shown in Figure 5.

P= 600

P=500

P = 400

t P = 300

P= 200

P= 100

Y

X
P=O

Figure 6. Curved cantilever bend under tip load: Deflected shapes

This problem was treated by Bathe and Bolourchi 13 with 3D brick elements, and sub-

sequently by Simo and Vu-Quoc 14 and Cardona 15 with beam elements based on other

formulations. Results with the TL 3D element described in Sections 5.5 and 10 were ob-
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Table 4. Comparison of results for the 45 ° bend cantilever beam

Source Load P = 300 Load P - 450 Load P = 600

Bathe 13 22.33, 58.84, 40.08

Simo 14 22.50, 59.20, 39.50

Cardona 15 22.14, 58.64, 40.35

Crivelli _'7 22.31, 58.85, 40.08

18.62, 53.32, 48.39

18.38, 52.11, 48.59

18.59, 53.34, 48.39

15.79, 47.23, 53.37

15.90, 47.20, 53.40

15.55, 47.04, 53.50

15.75, 47.25, 53.37

Y

L

X_Mx

Length
Polar Moment
Second Moments

Young's Modulus
Shear Modulus

L = 240 mm

Ix = 2.16 mm "s

ly = Iz = 0.0833 mm 4
E = 71240 N/mm2
G = 27190 N/mm2

Figure 7. Cable hockling: Problem definition

tained by Crivelli 5 using 8 beam elements and applying the load in 6 equal increments. The

solution method is incremental-iterative with full Newton iteration used in the corrective

phase. Results for the three tip displacement components are compared with those of the

aforementioned references in Table 4. Deflected shapes for selected load levels are shown

in Figure 6.

As can be observed the present results compare especially well with those obtained with

3D elements in Bathe and Bolourchi ]3.

11.5 Cable Hockling

The second problem, cable hockling, is more challenging as regards modeling and post-

buckling response analysis. An initially straight cable, modeled with 3D Timoshenko beam

elements, is subjected to a tip torsional moment. The geometry and physical properties

are given in Figure 7. The cable is clamped at one end and supported at the other so
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that the only motions allowed at that point are axial displacement and torsional rotation

about the longitudinal X axis. No rotation is allowed about Y or Z. The purpose of these

restrictions is to keep the problem conservative, because if the torque is allowed to rotate

about Y or Z, the problem becomes nonconservative and dynamical methods are required

to assess its stability. 16,17

This problem has received a great deal of attention from the engineering community due

to its practical importance. The main objective is to estimate the critical applied torque at

which the cable departs (bifurcates) from its straight configuration, resulting in the forma-

tion of a loop or hockle. This has direct application to marine cables used in tasks such as

lifting objects from the ocean floor, for which structural failure could be disastrous. Under

the assumptions of infinitesimal bending deformations, Greenhill obtained an analytical

formula to predict the critical torque; see e.g. pp. 417-418 of Love. is The post-bifurcation

response analysis of this problem, however, has not been pursued until recently, as dis-

cussed in the research conducted by Nour-Omid and Rankin. 19 This post-critical response

has also been analyzed by using the present TL formulation. The structure is discretized

by twenty equally-spaced beam elements.

The deformed shapes at different load levels are shown in Figure 8, which displays the

loop-formation process previously described. The curves on the left and right side show

deformed shapes looking along the Y and Z axes, respectively.

If the torque is held under the critical value, the beam twists without lateral deflection.

Along this fundamental path the response is linear. At the critical torque a bifurcation

point is reached, at which the fundamental path becomes unstable. The beam acquires

a helical shape with the free end moving towards the clamped end. This new equilib-

rium branch is unstable and the cable undergoes large displacements and rotations as the

moment decreases. The unloading process continues until reaching a sharp limit point

which corresponds to a negative value of the applied torque (it should be mentioned that

Nour-Omid and Rankin, x9 who use a Hermitian beam element based on a corotational

description, characterize this critical point as a secondary bifurcation; evidence for this

classification is presently inconclusive). After traversing this point, the torque reverses

again until the cable reaches a circular-shaped unloaded deformed configuration.

The computed variation of the twist angle at the moving end versus the applied torque is

given in Figure 9. Results are compared to those given by Nour-Omid and Rankin.

12. CONCLUDING REMARKS

This article covers an alternative technique for formulating geometrically nonlinear me-

chanical finite elements based on the Total Lagrangian kinematic description. The Core-

Congruential Formulation, or CCF, can be approached and studied at several levels of

complexity. These give rise to what are called here the Direct, Algebraic-Generalized, and
Differential-Generalized CCF.

All of these variants, however, share a basic staged approach to the derivation of discrete
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Figure 8. Cable hockling: Deformed shapes at different load levels:

a) After bifurcation, b) M_ = 50, c) M_ = 0, d) M, = -50,

e) At the limit point, f) M, = 0.

finite element equations. In the innermost level, core equations are obtained at the particle

level. These physically transparent equations depend only on the strain and stress measures

adopted and the choice of terms retained in the strain energy. This is followed by a
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transformation phase that ultimately ends in the element nodal degrees of freedom. For

complex elements the transformation phase is frequently carried out in stages.

For elements whose nodal degrees of freedom include 3D finite rotations, a multistage

transformation is convenient in the sense that the decision on which finite rotation mea-

sure to use can be relegated to the next-to-last stage, while the choice of finite element

interpolation and nodal degrees of freedom is introduced in the last stage. This strategy

facilitate application of inner-level equations to sets of different but related elements and

fosters programming modularity.

At this point one may well pose general questions such as: Why use the Total Lagrangian

description? Wouldn't a co-rotational or Updated Lagrangian formulation be preferable?

The answer is that each description has strengths and weaknesses. Here are advantages

that can be cited for the TL description:

1. If the element development can be carried out under the framework of the DCCF or

AGCCF, a symmetric tangent stiffness formulation is guaranteed. This attribute has

obvious advantages in stability analysis and traversal of bifurcation points.

2. The choice of a fixed reference frame has advantages in nonlinear dynamic calcu-

lations in that the mass matrix remains symmetric, with the same sparsity as in

small-deflection analysis.
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3. The useof Green-Lagrangestrains and conjugate PK2 stresses,linked up with careful
avoidanceof hazardouskinematic approximations, automatically takes care of rigid
body motions. No special filters to eliminate self-straining at the element level are
needed.

4. Extension to nonlinear constitutive equations and finite strains is straightforward
although may be laborious. In the caseof the CCF, extension to small-strain material
nonlinearity would affect only the coreequations becausethe transformation phaseis
entirely governedby elementkinematics.

The TL description, however,suffersfrom severalshortcomings:

5. It makesno effectivereuseof existing linear finite elements. This is the key strength
of the element-independentcorotational description.19'2°

6. Hasdifficulties with the specification and computational treatment of boundary con-
ditions intrinsically linked to the deformedconfiguration; for examplepressureloads.
Both the corotational and Updated Lagrangian descriptions handle this aspectbetter.

7. Eventually breaks down for exceedingly large motions, for example rotations exceed-
ing 27r. This disadvantagecan be important for certain aerospaceand mechanical
structures.

From this list it follows that there is no "kinematic description for all seasons." One
intriguing researcharea that may merit exploration in this regard is a combination of the
TL and corotational descriptionsthat maintains their individual strengths while alleviating
the more seriousdisadvantages.
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Appendix 1

Equivalence of DCCF and Standard TL Formulation

The correspondence between the Direct Core Congruential Formulation (DCCF) and the Standard

Formulation (SF) of the Total Lagrangian (TL) kinematic description is generally established for
3D continuum finite elements. This connection was worked out in a course term project. 11 Such

elements fit within the DCCF framework because their physical DOFs (node displacements) are

of translational type.

The Standard Formulation is based on the same scheme used for linear finite elements: first

interpolate, then vary. As in the linear case, the departure point is extremization of the Total

Potential Energy functional (TPE) over the element domain:

J=U-W=/voeTS°dV+_/jvoeTEedV-/voUTbdV-j(s,ouTtdS'
(A1.1)

where as usual conservative dead loading is assumed. In (AI.1), b is the prescribed body force field,

t are surface tractions prescribed over portion St0 of the boundary in Co, and other quantities are

as defined in Section 4. The weak equilibrium equations are obtained on making (AI.1) stationary:

tSJ=$U-SW=/ tSeTsodV+/ t_eTEedV-/yoi_UTbdV-j_ s _uTtdS=O.
J V o J V o to

(A1.2)

The displacement and strain fields are interpolated in terms of the element degrees of freedom v:

u = N v, /_u = N/Sv, 8e = B/_v, (A1.3)

where B = B(v) depends in v but N does not. Substituting these interpolations into (A1.2)

yields the residual equilibrium equations

6J = _vTr = _vT(f -- p) -- 0. (A1.4)

where

f = /voBT (s° + Ee)dV = /vo BTsdV' P = /vo NTbdV + fs,o NsdS,
(A1.5)

where f and p are the internal and external force vectors, respectively, and s = s o + Ee are the

PK2 stresses in C. Because the variations 8v are arbitrary, the residual-force nonlinear equilibrium

equation is r = f - p = 0 or f = p. The tangent stiffness matrix is given by

K = Or = Of (A1.6)
0v 0v'

because p (for conservative dead loading) does not depend on v. Splitting B = Bc +By(v), where
Bc is constant but By depends on v, gives the well known decomposition

K = K0 + Ko + KG, (AI.7)
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where K0, KD and KG denote the linear, initial-displacement and geometric stiffness matrices,
respectively. These are given by

f

Ko = ./_^ BTEB_ dV,

K_ = (B_EBo+B_EBc +B_EB_)eV,

KG _V = / _BTs dV.

J_o

(A1.8)

To correlate these standard forms with those produced by the DCCF, we note that the GL strains

can be also split as e = ec + e_, where e_ and e_ are linear and nonlinear in v, respectively. The
latter may be expressed in terms of the displacement gradients as

1 Ae_ = _ g, (AI.9)

where A is the 6 x 9 matrix

A

-gT 0 0

0 gT 0

0 0 gT

o g_ g_
g_ o gT
g_ gT o

"gl
0

0

0

gz

g4

g_ g3 0 0 0 0 0 0

0 0 g4 g5 g6 0 0 0

0 0 0 0 0 g7 gs g9

0 0 g7 gs 99 g4 g5 g6

gs g9 0 0 0 gl g2 g3

gs g6 gl g: ga 0 0 0

(A1.10)

in which the displacement gradients are vector-arranged as

= ... (A1.11)
Comparing

1_e_=½_Ag+ :A_g= A_g, (A1.12)

to the DCCF transformation relation _g = G_iv, in which G is independent of v, we see that

B, = AG. (A1.13)

The other expression we require is (_flkTs, which appears in the geometric stiffness matrix con-
tracted with _v:

KG _v = _Vo _BTsdV=_voGT_ATsdV" (A1.14)

It is well known -- see for instance Chapter 19 of Zienkiewicz 21 -- that

(_ATs = M_Sg = MG_v, with M =
slI s4I ssI]

s4I s2I s6I[ ,
ssI s6I s3IJ

(A1.15)
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where I is the 3 x 3 identity matrix and sl, i = 1,...6 are components of the PK2 stress tensor

ordered sl = s11, s2 = s22, ... s6 = s23. Using this relation, Ka can be placed in the standard

form
P

Ka = Iv. GTMG dV, (Al.16)

which by inspection is seen to be the DCCF-transformation of the core geometric stiffness M ----

SG = siHi, with the Hi matrices defined in (4.3).

To correlate other terms, write the linear part of the GL strains in terms of gradients as

e¢ =Dg=DG_fv, with D=

1 0 0 0 0 0 0 0 0"

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

.0 0 0 0 0 1 0 1 0

(A1.17)

The numerical D matrix can be easily related to the hi vectors introduced in (4.3). Because

both D and G are independent of v it follows that _ec = DG dfv and consequently Bc = DG.

Partitioning A as [a T aT ... a_] one easily finds that ai _ Hig. Now the following identities

can be verified through simple algebra:

DTED = Eijhih T = So,

DTEA = Eij hia T =Eij higTHj = $1, ATED = S T,

ATEA = E_ja_aj = EoHig_gTHj = $2 = S T ,

: Si Hi S_ 1 *M : s°Hi + E_jhigHj + ½(gTHig)Hj o + + 5-$2 = siH_.

(Al.18)

Comparing these to the expressions of Section 4.3 we conclude that

KO = /vo GTDTEDG dV = /vo GTSo G dV,

KD = /vo GT(DTEA + ATED + ATEA)GdV =

Ka : /voGTMGdV = /vo GTSaGdV,

fvo GTSDG dV, (Al.19)

which displays the equivalence of both formulations when no approximations are made. This proof

may be extended without difficulty to the AGCCF in which case G is a function of v, although
as noted in the text that situation is sometimes mishandled in the Standard Formulation through

the introduction of a priori kinematic approximations. The equivalence between DGCCF and SF

is more difficult to prove because there is no TPE functional from which the latter can be derived,

and such connection should be regarded as an open problem.
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Appendix 2

Tangent Stiffness Subroutine for Two-Node 3D Bar

The subroutine listed below implements the expression derived in Section 7.1 for the global tan-

gent stiffness of a two-noded TL 3D bar element. The Fortran implementation is biased in favor

of computational speed. Therefore, it contain no loops or calls to other subroutines, as that

would slow down the calculations. The formation of the 6 x 6 tangent stiffness matrix requires 74

multiplications, 14 divisions, 64 additions/subtractions and 3 square roots, for a total of approx-

imately 160 double precision floating-point operations. On a 15-MFlop workstation, this results

in approximately 50000 elements formed per CPU second.

One point that deserves some attention is the numerically-stable choice of the local coordinate

system. Axis X is uniquely defined as the longitudinal bar axis that passes through the end nodes,

but axes _" and Z may be arbitrarily rotated about X because a 3D bar has no preferred transverse

directions. Although the end result, namely K, is independent of this choice it is important to

choose _r and Z in a stable manner that works for any element orientation. The procedure is
described in code comments below.

subroutine BAR3K (xO, v, em, area, sO, k, status)

C

C

C

C Inputs:
C xO

C v

C em

C area

C sO

C

C Outputs:
C k

C status

C

C

C

C

C

C

C

C

C

Compute tangent stiffness matrix of 2-node TL 3D bar

Reference node coordinates

Global node displacements
Elastic modulus

Cross section area in reference configuration

PK stress in reference configuration

Tangent stiffness of bar element

Blank if no error detected else error message

double precision
character*(*)

double preclslon

double preclslon

double preclslon

double preclslon

double preclslon

double preclslon

equivalence

equivalence

equivalence

x0(3,2), v(3,2), em, area, sO, k(6,6)

status

xbar(3), ybar(3), zbar(3)

ixbar, lybar, izbar, ixbar2, Ix2

dx(3), du(3), g(3), tt(3,3), ea, sg, s

kill, ktl2, ktl3, kt21, kt22, kt23

kt31, kt32, kt33

sbarll, sbar12, sbarl3, sbar22, sbar23, sbar33

(it(l, I) ,xbar(1) )

(tt(1,2) ,ybar(1))
(tt(1,3),zbar(1))

status = ' '

Form 3 x 3 global to local transformation matrix T

Note: array tt receives T-transpose (inverse of T)

Method: begin by getting dir cosines t11,t12,t13 of Xbar wrt X

Compute sqrt(tll**2+t12**2); if gt tel set directors of Ybar

to -t12,tll,0 and normalize; else set to O,-t13,t12 and normalize.
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C
C
C

C
C
C
C
C

C

C

C

C

C

C

C

Value of tol set to .01 but any value ge 0 would do fairly well.

Finally Zbar = Xbar x Ybar.

dx(1) = xO(l,2) - xO(l,l)

dx(2) = x0(2,2) - xO(2,1)

dx(3) = x0(3,2) - x0(3,1)

Ixbar2 = dx(1)**2 + dx(2)**2 + dx(3)*.2

Ixbar = sqrt(ixbar2)

if (ixbar .eq. 0.0) then

'BAR3K: Bar has zero length'status =

return

end if

xbar(1) =

xbar(2) =

xbar(3) =

dx(1)/ixbar

dx(2) llxbar

dx (3) llxbar

lybar -- sqrt(xbar(l)**2 + xbar(2)**2)

if (lybar .gt. 0.01) then

= -xbar(2)/lybar

= xbar (1)/lybar
= 0.0

ybar(1)

ybar(2)

ybar(3)
else

lybar =

ybar(2)

ybar(3)

ybar(1)
end if

zbar(1) =

zbar(2) =

zbar(3) =

sqrt(xbar(2)**2 + xbar(3)**2)

= -xbar (3) llybar

= xbar (2) llybar
= 0.0

xbar(2)*ybar(3) - xbar(3)*ybar(2)

xbar(3)*ybar(1) - xbar(1)*ybar(3)

xbar(1)*ybar(2)- xbar(2)*ybar(1)

Izbar = sqrt(zbar(1)**2 + zbar(2)**2 + zbar(3)**2)
if (Izbar .ne. 1.0) then

status = 'BAR3K: Izbar ne 1.0: cannot happen'

return

end if

Form core material and geometric stiffness in local coordinates

Note: only six different entries of sbar need to be computed
because

R -R

Kbar =

-R R

where
sbarll sbar12 sbar13

R = sbar22 sbar23

symm sbar33

ea =

du(1) =

du(2) =

du(3) =

Ix2 =

S =

sg =

g(1) =

g(2) =

g(3) =

em*areallxbar

v(1,2) - v(1,1)

v(2,2) - v(2,1)

v(3,2) - v(3,i)
(dx(1)+du(1))**2 + (dx(2)+du(2))**2 + (dx(3)+du(3))**2

sO + em*O.5*(ix2-1xbar2)/ixbar2

s*areallxbar

(tt(1,1)*du(1)+tt(2,1)*du(2)+tt_,l)*du(3))/Ixbar

(tt(1,2)*du(1)+tt(2,2)*du(2)+tt(3,2)*du(3))/lxbar

(tt(1,3)*du(1)+tt(2,3)*du(2)+tt(3,3)*du(3))/lxbar
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sbarll = ea * (1.+g(1))*.2 + sg
sbar22 = ea * g(2)*.2 + sg

sbar33 = ea * g(3)*.2 + sg
sbar12 = ea * (1.+g(1))*g(2)
sbarl3 = ea * (Z.+g(1))*g(3)
sbar23 = ea * g(2)*g(3)

Transform

kt11 =

kt21 =

kt31 =

ktl2 =

kt22 =

kt32 =

ktt3 =

kt23 =

kt33 =

k(l,l) =

k(l,2) =

k(2,1) =

k(1,3) =
k(3,1) =
k(2,2) =

k(2,3) =
k(3,2) =

k(3,3) =

k(4,1) =
k(5,1) =
k(6 I) =

k(4 2) =
k(5 2) =
k(6 2) =

k(4,3) =
k(5,3) =
k(6,3) =

k(1,4) =

k(2,4) =

k(3,4) =

k(4,4) =
k(5 4) =

k(6,4) =
k(l,5) =

k(2,5) =
k(3,5) =
k(4,5) =
k(5,5) =
k(6,5) =
k(l,6) =

k(2,6) =
k(3,6) =

k(4,6) =
k(5,6) =

k(6,6) =

return

end

core stiffness to physical global coordinates

tt(1,1)*sbarll

tt(l,1)*sbar12

tt(1,1)*sbar13

tt(2,1)*sbar11

tt(2,1)*sbar12

tt(2,1)*sbar13

tt(3,1)*sbarll

tt(3,1)*sbar12

tt(3,1)*sbar13

tt(1,1)*kt11 +

tt(l,1)*kt12 +

k(1,2)

tt(i,l)*kt13 +

k(1,3)

tt(2,l)*kt12 +

tt(2,1)*ktt3 +

k(2,3)
tt(3,1)*ktl3 +

-k(l,l)

-k(2, i)

-k(3,1)

-k(1,2)

-k(2,2)
-k(3,2)
-k(l,3)

-k(2,3)
-k(3,3)

k(4,1)

k(4,2)

k(4,3)

k(l,l)

k(2,1)

k(S,t)
k(5,1)

k(5,2)

k(5,3)
k(5,4)

k(2,2)
k(3,2)
k(6,1)

k(6,2)
k(6,3)
k(6 4)

k(6 5)

k(3 3)

+ tt(1,2)*sbar12 + tt(1,3)*sbarl3

+ tt(i,2)*sbar22 + tt(l,3)*sbar23

+ tt(1,2)*sbar23 + tt(1,3)*sbar33

+ tt(2,2)*sbar12 + tt(2,3)*sbar13

+ tt(2,2)*sbar22 + tt(2,3)*sbar23

+ tt(2,2)*sbar23 + tt(2,3)*sbar33

+ tt(3,2)*sbar12 + tt(3,3)*sbarl3

+ tt(3,2)*sbar22 + tt(3,3)*sbar23

+ tt(3,2)*sbar23 + tt(3,3)*sbar33

tt(1,2)*kt21 + tt(l,3)*kt31

tt(1,2)#kt22 + tt(1,3)*kt32

tt(1,2)*kt23 + tt(l,3)*kt33

tt(2,2)*kt22 + tt(2,3)*kt32

tt(2,2)*kt23 + tt(2,3)*kt33

tt(3,2)*kt23 + tt(3,3)*kt33
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